Name:	Index No
School:	Candidate's Sign
Date:	
233/2 CHEMISTRY	
PAPER 2 JULY/AUGUST 2011	

For More Free KCSE Revision Past Papers and Answers Visit http://www.joshuaarimi.com

BUSIA JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Paper 2

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- Answer *all* the questions in the spaces provided.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators can be used.

Question	Maximum score	Candidate's score
1		
2		
3		
4		
5		
6		
Total	80	

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

© Busia – 2011 Form Four 1 Chemistry 233/2

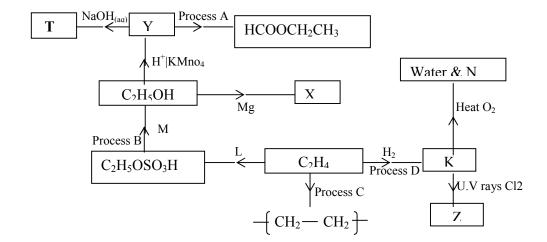
1. Use the information below on standard electrode potentials to answer the questions that follow:

Electrode reaction			E^{θ} volts
$C^{2+}_{(aq)} + 2e^{-}$	=	$C_{(s)}$	+ 0.34
$D^{2+}_{(aq)} + 2e^{-}$	=	$D_{(s)}$	+ 0.44
$E^+_{(aq)} + e^-$	=	$E_{(s)}$	- 2.92
$Fe^{2+} + 2e^{-}$	=	$F_{(s)}$	- 2.71
$G^{2+} + 2 e^{-}$	=	$G_{(s)}$	-0.14
$^{1}/_{2}$ $H_{2(g)} + e^{-}$	=	H ⁻ (aq)	+ 2.87
$^{1}/_{2} \text{ K}_{2(g)} + e^{-}$	=	$K_{(aq)}$	+ 1.09
$L^{+}_{(aq)} + e^{-}$	=	$^{1}/_{2}$ L_{2}	0.00

a) (i) Identify the strongest reducing agent and the strongest oxidizing agent. Give reasons.	(2mks)
	••••
	••••
(ii) Calculate the e.m.f of the cell formed by connecting half cells C and D.	(1mk)

b) Draw and label a diagram of a cell formed by –connecting half cells of E and D. On the diagram indicate the flow of electrons. (3mk)

c) An aqueous solution of Copper (II) Sulphate was electrolysed using platinum electrodes. When a current was passed a gas that relights a glowing splint was produced.


(i) Name the electrode which acts as cathode. Give a reason. (1mk)

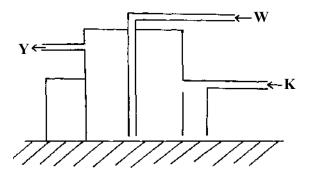
(ii) Write an equation for the reaction at the anode. (1mk)

- d) 0.11g of metal R deposited by electrolysis when a current of 0.03 amperes flow for 99 minutes. (R = 92.), (1 Faraday = 96500 C)
 - (i) Find the number of moles of metal deposited. (2mks)
 - (ii) Find the number of moles of electrons passed. (2mks)
 - (iii) Determine the value of \mathbf{n} in the metallic ion \mathbf{R}^{nt} . (2mks)
- 2. (a) Define Isomerism. (1mk)
 - (b) Draw and name one of the position isomers of Butene. (2mks)
 - (c) Filter paper dipped in acidified Potassium Manganate (VII) were placed in two separate gas jars A and B containing pentane and Pent-l-ene respectively. Explain what was observed in each case.

 (2mks)

(d) The scheme below shows some products that can be obtained starting from ethene.

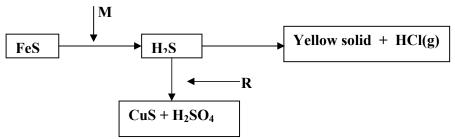
© Busia – 2011 Form Four 3 Chemistry 233/2


(i) Name the compounds K	T	(4mks)
L	X	
M	Y	
N	Z	
(ii) Name the process	2	(2mks)
A	C	(ZIIIKS)
B	D	
A	rocesses in (ii) above to take place.	(3mks
C		
D		
to the filtrate and the content filtered. The a) Give the chemical name of the product	xture filtered and cooled. Sodium carbonate a residue was washed and dried to give a white	was added te powder. (1mk)
b) Write a chemical equation for the forma		(1mk)
•	•	, ,
c) (i) Name filtrate collected after sodium c	arbonate was added	(1mk)
(ii) Name the white powder.		(1mk)
d) Write chemical equation for the reaction b	petween product in (a) and acid.	(1mk)
e) Name the ions present in the filtrate after a	addition of sodium carbonate.	(1mk)
f) Write an ionic equation to show the format		(1mk)
a) Write an equation to show what happened	when white powder is strongly heated.	(1mk)
g) write an equation to show what happened		
4. Elements V,W and X have atomic number 17 (a) What is the valencies of V and W respects	ively	(1mk)
4. Elements V , W and X have atomic number 17 (a) What is the valencies of V and W respects	ively	
4. Elements V , W and X have atomic number 17 (a) What is the valencies of V and W respects (b) To which groups of the periodic table do	ively	(1mk)
4. Elements V , W and X have atomic number 17 (a) What is the valencies of V and W respects (b) To which groups of the periodic table do (c) In which periods do elements V and W lies	vely V, and X belong.	(1mk) (1mk)

For More Free KCSE Revision Past Papers and Answers Visit http://www.joshuaarimi.com

© Busia – 2011 Form Four 4 Chemistry 233/2

 (e) Write down the formula of the compounds formed when: (i) V reacts with W 	(1mk)
(ii) X reacts with Oxygen	(1mk)
f) How many (i) Neutrons does V have? if its mass number is 35	(1mk)
(ii) Protons does W have ?	(1mk)
The diagram below shows the preparation of nitric acid.	
Conc. H ₂ SO ₄ Solid A Heat	Liquid B
a) Name solid A	(1mk)
b) Under what conditions does sulphuric acid react with solid A	(1mk)
c) What is the colour of liquid B	(1mk)
d) What is the purpose of cold water	(1mk)
e) 1 cm ³ of liquid B was diluted with distilled water and afew drops of cop A colourless gas and later brown gas were produced. (i) Name the colourless gas	
(ii) Name the brown gas formed?	` '
(iii) Give an equation for the formation of the brown gas	(1mk)
(iv) Give two uses of the nitric acid.	(1mk)


Form Four 5 Chemistry 233/2 b) The diagram below shows the process of extracting sulphur from its ore. Study it and answer the questions that follow.

a) Name the substances that pass thro	119	u	()	1	ı	ĺ	9	9	ç	ç	ç	ç	ç	į	ç	ç	ç	9	9	9	9	ç	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
---------------------------------------	-----	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

(i	W	$(\frac{1}{2}ml$	()

- b) Explain the purpose of what passes through (1mk)
- (i) **W**.....
- (ii) **K**.....
- c) Study the diagram below and answer the questions that follow

(i) Identify the reagents M	(1mk)
R	
(ii) Name the yellow solid.	(1mk)
(iii) By using a chemical test, how can you distinguish $H_2S(g)$ and $SO_2(g)$	(2mks)
d) What would be the effect of the yield of sulphur (VI) oxide when (i) Increasing the concentration of oxygen.	(1mk)
(ii) Increasing the temperature .	(1mk)
e) (i) Describe how sulphuric acid is manufactured from sulphur (VI) oxide.	(2mks)

6

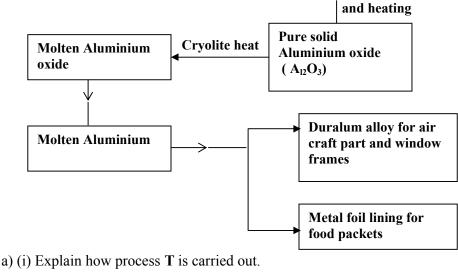
Chemistry 233/2

Form Four

© Busia - 2011

(ii) Name **two** uses of sulphur (VI) acid. (2mks)

6. The flow chart below shows industrial extraction Aluminium metal. Study it and answer the questions that follow.


| Bauxite (Al₂O₃XH₂O) with iron oxides and silicate as impurities | Process T

Solution containing

Precipitation

Al(OH) ion

Residue P

(ii) Name residue **P**, give a reason.

(iii) Explain why it is necessary to heat Aluminium oxide in presence of cryolite before electrolysis is carried out.

(1mk)

(1mk)

.....

© Busia – 2011 Form Four 7 Chemistry 233/2

(ii) Carbon is not used for the reduction of Aluminium oxides.

c)	What properties of Aluminium and its alloys make them suitable for the uses indicated?	(1mk)
d) When 31.2g of hydrated. Aluminium oxide (Al ₂ O ₃ XH ₂ O) was heated to a constant mass of of Aluminium oxide (Al ₂ O ₃) was obtained. Determine the value of x in hydrated oxide. (Al= 27.0, O=16.0, H=1.0)	20.6g (3mks)
7.	(a) Name the solution and the catalyst used in preparation of oxygen in the laboratory.	(2mks)
	(b) Give a chemical equation for the reaction above.	(1mk)
	(c) In an experiment to determine the proportion of oxygen in air, Copper turning were pact excess in a long combustion tube connected to two syringes of 120cm³ each in a volume contained 120cm³ of air while syringe S was closed and empty as shown. Copper Turnings Syringe S Syringe S	
	Syringe S Air was passed over heated turnings slowly and repeatedly until there was no further chang in volume. 95.5cm ³ of air remained in syringe R .	e
	(i) Why was copper packed in excess?	(1mk)
	(ii) Why was air passed over heated copper slowly?	(1mk)
	(iii) State one observation made in the combustion tube during experiment.	(1mk)
	(iv) Give an equation for the reaction that took place in combustion tube	(1mk)
	(v) Determine the percentage of oxygen used up during the experiment .	(2mks)
	(vi) Give a hospital use of oxygen.	(1mk)

© Busia – 2011 Form Four 8 Chemistry 233/2