Name Attitue to	
70	
School	Candidate's Signature
233/2 CHEMISTRA TOTAL TO	Date
233/2	
PAPER 20 300	
JULYANGUST	
(THEORY) TIME: 2 HOURS	
ATME: 2 HOURS	

MASINGA DISTRICT JOINT EVALUATION TEST - 2011

Kenya Certificate of Secondary Education (K.C.S.E)

233/2 CHEMISTRY PAPER 2 (THEORY) TIME: 2 HOURS

INSTRUCTIONS

) 777

- a) Write your name and the Index Number in the spaces provided above.
- b) Answer ALL the questions in the spaces provided after each question.
- c) Use of Mathematical sets and silent calculators may be used.
- d) All working should be clearly shown.

FOR OFFICIAL USE ONLY

QUESTIONS	EXPECTED SCORE	CANDIDATES SCORE
1	10	
2	12	
3	10	
4	10	
5	14	
6	10	
7	13	
TOTAL	80	

This paper consists of 12 printed pages.

Candidates should check to ensure that all pages are printed as indicated and no questions are missing.

© 2011, Masinga District Joint Evaluation Test

Turn Over

1.	a) State two environmental effects of fuel.
	, o The second s
	ode,
	h) The digaram below represents a set up that was used to determine the molar heat of combustion of

During the experiment the data given below was recorded.

Volume of water	450cm ³
Initial temperature of water	$25^{0}c$
Final temperature of water	46.5^{0} c
Mass of ethanol + lamp before burning	125.5g
Mass of ethanol + lamp after burning	124.0g

Calculate

i. Heat evolved during the experiment.

Density of water =1g/cm ³ , specific heat capacity of water =4.2jg ³ k ³)	(3 Marks)

	ii.	Molar heat of comperstion of ethanol	233/2 Chemistry Pape
		(C=12.0 O=16.0 H=1.0)	(2 Marks
		70 C.	
		. ot citi	
	\$ \$ X		
	4C2.302	·	
E. C.	c) Wi		
not at it	c) W ₁	rite the equation for the complete combustion of ethanol.	(1 Mark)
7 ,	d) Th	ne value of the molar heat of combustion of ethanol is -1368Kj/mole.	
	i.	State the meaning of the negative sign in the value above.	(1 Mark)
	ii.	Why does the value calculated from experimental results differ from this.	
	•••••		
	2. a)Dra	aw the structures of the following compounds	
	i.	2,2, – dimethyl propane.	(1 Mark)
	ii.	Hexanoic acid.	(1 Mark)
	h) Sta	te the observations made when hexanoic acid reacts with.	
	i.	Acidified potassium dichromate (VI) solution	(1 Mark)

(1 Mark)

c) The structures below represents two cleansing agents.

ii.

$$R \longrightarrow SO Na^+$$

In the table below give one advantage and one disadvantage of using each one of them.

	Advantage	Disadvantage	
O R - C - O - Na ⁺			
$R - \underbrace{\hspace{1cm}}_{3} Na^{+}$			

(2 Marks)

(1 Mark)

- d) Under certain conditions, ethanoic acid (C₂H₄O₂) and ethanol (C₂H₅OH) reacts to form a sweet smelling compound.
 - What is the general name of the compounds to which the sweet smelling compound belongs.

Write the formula of the sweet smelling compounds. (1 Mark)

iii. Give one use of ethanoic acid other than the formation of the sweet selling compounds.

Write the equation for the reaction between dilute ethanoic acid and olid potassium iv. carbonate. (1 Mark)

e) Fibres	are either sy	nthetico	y r natural, giv	re one	2	233/2 Chemistry Paper 2
	Example of a	U				(1 Mark)
	Sacour.					
ii. O	ne disadvan	tage of sy	ynthetic fibro	es		(1 Mark)
20,000	<i>Ş</i>					
a) The ta	able below s	hows the	standard re	duction potential	s for four half_cells Si	tudy it and answer
the quest	tions that foll	low (lette	er are not the	actual symbols f	Is for four half–cells. So for the elements) (Volts) +0.54 -0.44	ady it und unswer
\$\frac{1}{2}\$		·		•	(Volts)	
F	C _{2(aq)} +	2 e		2F-(aq)	+0.54	
G	$g^{2+}_{(aq)} +$	2e		$G_{(s)}$	-0.44	
	$I_{(aq)}^{2+} +$	2e		$H_{2(g)}$	+0.34	
2.	$J^+_{(aq)}$ +	2e		$\mathbf{J}_{2(\mathrm{g})}$	0.00	
i. Ide	ntify the stro	ongest rec				(1 Mark)
ii. Wr	ite the ques	tion for	the reaction	which takes pla	ace when solid G is ac	lded to a solution
con	ntaining H ²⁺	ions.				(1 Mark)
			or the reaction			

b) The diagram below shows the apparatus that can be used to electrolyse acidified water to obtain hydrogen and oxygen gases. Study it and answer the questions that follow.

b) Study the information in the table below and answer the questions that follow (letters are not the actual symbols of the elements)

	Element	Element arrangement of	Atomic radius (nm)	Ionic radius (nm)
	Q. ° ,	stable ion		
	N of the	2.8.8	0.197	0.099
	N or in Principal Republication	2.8.8	0.099	0.181
,	Ryciv	2.8	0.160	0.065
	Š	2.8	0.186	0.095
	T	2	0.152	0.068
	U	2.8	0.072	0.136

i.	Write the formula of the compound formed when N reacts with P.	
	(Atomic numbers are N=20 P=17)	(1 Mark)
		(2.1.1.)
11.	Identify the elements which belong to the third period of the periodic table. Explain	(2 Marks)
iii.	Which of the elements identified in b(ii) above comes first in the third period? Explain	(2 Marks)
iv	Select two elements which are non- metals.	(1 Mark)
1 V	. Select two elements which are non- metals.	(1 iviaik)

c) The table below gives some properties of substances I, II, III and IV. Study it and answer the questions that follow.

Substance	Electrical o	$M.P^0C$	B.P ⁰ C	
	Solid	liquid	111.1	D .1 C
Ι	Does not Conduct	Conducts	801	1420
II	Conducts	Conducts	650	1107
III	Does not Conduct	Does not Conduct	1700	2200
IV	Does not Conduct	Does not Conduct	113	440

	i.	What type of bonding exists in substance I and II	(2 Marks)
	1,	σ	(2 Williks)
		II	
		II	
	ii.	Which substance is likely to be sulphur? Explain	(2 Marks)
		······································	
		6 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5.	a PA	salt believed to contain chloride ions was dissolved in water to form a solut	
C.	S\$ 10°		
4	1. 4 h	Describe how a sample of the solution could be tested to find out if it contains	ined chloride ions.
550 / m	72.		(2 Marks)
6 x8.			
note fite. I do			
3 7	ii.		
	11.	Calculate the percentage by mass of emoride in potassium emoride. (K=3)	,
			(1 Mark)

b) 20g of potassium chloride were placed in a glass beaker and 40.0cm³ of water were added. The beaker was heated until all the potassium chloride had dissolved and then allowed to cool. When crystals first appears the temperature was noted. An extra 5.0cm³ of water were added and the experiment was repeated. The results of experiment were as shown below.

Experiment	Volume of	water	Temperature at which	Solubility in g/100g
	(cm ³⁾		crystals formed	of water
1	40		77	-
2	45		56	44.5
3	50		40	-
4	55		26	36.3
5	60		15	-
6	65		8	30.8

i.	(Са	ılc	ul	ate	e t	he	V	a]	lu	es	(f	S	o]	lu	b	il	it	У	i	n	٤	<u>s</u> /	1	0	0	9	5 (0	f	ν	V	at	te	r	ν	vl	hi	ic	h	1	ar	e	r	ni	İS	si	n	g	f	rc	n	1	th	ie	t	a	ol	e	(.	3	N	1	aı	rk	S)
	٠.	• •		• •		• •		٠.										٠.	•			•	٠.						•					•		•		•									•							٠.	•				•		 •		•					
	٠.							٠.						٠.															•																																							

ii. On the grid provided provi (horizontal axis) (3 Marks)

		iii. What is the effect of temperature on solubility of potassium chloride in water?	233/2 Chemistry Paper 2 (1 Mark)
		€og e	
	i	iv. From the graph	
		I. What is the solubility of potassium chloride at 60° c?	(1 Mark)
		Seguinati	
~ ee	A.C.	At what temperature will solubility be 35g/100g of water?	(1 Mark)
Mototic	\ '	III. What is the mass of crystals deposited when the solution is cooled from 70	
Q Y			(2 Marks)
	6.	In an experiment a piece of aluminium ribbon was cleared with steel wool. aluminium ribbon was placed in a crucible and completely burnt in oxygen. product weight 4.0g.	_
		a) Explain why it was necessary to clean the aluminium ribbon?	(1 Mark)
		1) What land the same of the s	(1.M. 1)
		b) What observation was made in the crucible after burning?	(1 Mark)
		c) Why was there an increase in mass?	(1 Mark)
		d) Write equation for the reaction which took place in the crucible.	(1 Mark)

	e) The product in the crueble was shaken with water and filtered. Explain the	observation which
	was made when blue and red litmus papers were dropped into the filtrate.	(3 Marks)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	f) Coloubto the volume of evergon are used during the hurning (O=16; moler	
	24000cm ³ at room temperature)	(3 Marks)
₹C.	5 ⁵ 10 ⁵	
Free LC.	g) State one use of oxygen.	(1 Mark)
y x's		

7. a) Below is a simplified diagram of the Down's cell used for the manufacture of sodium. Study it and answer the questions that follow.



1.	What material is the anode made of? Give a reason	(2 Marks)
ii.	What precautions is taken to prevent chlorine and sodium from re-combining.	(1 Mark)

	iii. Write an ionic equation for the reaction in which chlorine gas is formed.	Chemistry Paper 2 (1 Mark)
	&sabes	
	b) In the Downs process (used for manufacture of sodium) a certain salt is added to low point of sodium chloride from about 800°c to about 600°c.	er the melting
4	Name the salt that is added.	(1 Mark)
Moterxe.	ii).State why it is necessary to lower the temperature.	
<b>5</b>	c). Explain why aqueous sodium chloride is not suitable as an electrolyte for the manufact	
	in the Downs process.	(2 Marks)
	d). Sodium metal reacts with air to form two oxides. Give the formulae of the two oxides.	
	e).State three uses of sodium metal.	(3 Marks)