Name	Index Number
School	Candidate's Signature
233/2	Date
	Date
CHEMISTRY	
Paper 2	
(THEORY)	
2015	
2 hours	

MAKUENI COUNTY KCSE 2015 PREPARATORY EXAMINATION

Kenya Certificate of Secondary Education

CHEMISTRY

Paper 2

(THEORY)

2 hours

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer **all** the questions in the spaces provided in this question paper.
- (d) KNEC Mathematical tables and silent electronic calculators may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 15 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

For Examiner's Use Only

Questions	Maximum Score	Candidate's Score
1	10	
2	11	
3	13	
4	11	
5	15	
6	11	
7	9	
Total Score	80	

Sponsored by H.E. Prof. Kivutha Kibwana, Governor, Makueni County.

1.	(a)	Dis	tingu	iis	h b	et	wee	en	iso	toj	pe	s a	nd	l all	lot	rop	es.	•													(2 mar	ks)
		•••••	•••••	••••	••••	••••	· • • • • •	, .	••••	••••	••••	••••	••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	••••	••••	••••	•••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	••••
		•••••	•••••	••••	••••	••••	·••••	· • • • •	••••	••••	••••	••••	••••	• • • • •	•••••	•••••	•••••	•••••	•••••	•••••	••••	••••	••••	•••••	• • • • • •	••••	•••••	•••••	•••••	•••••	•••••	••••
		•••••	•••••	••••	••••	••••	••••	, .	••••	••••	••••	••••	••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	••••	••••	••••	•••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	•••••
		•••••	•••••	••••	••••	••••	•••••		•••••	••••	••••	••••	••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	••••	••••	••••	•••••	• • • • • •	••••	•••••	•••••	•••••	•••••	•••••	•••••
	(b)		e cha ers ai					-				-								•	an	d a	nsv	wer	the	qu	ıest	ions	th	at fo	ollow (the
			7							,	,								,										7			
		A	D																						В	1		Е				
			D																									L				
		(i)						neı	nt i	ո լ	pe	rio	d 1	thr	ee	wh	nicł	h h	as	the	sh	ort	est	ato	mic	c ra	adiu	ıs. C	Sive		eason	
			your	a	nsv	vei	Ĩ.																								(2 mar	ks)
			•••••	••••	• • • • •	••••	••••	••••	•••••	••••	••••	••••	••••	••••	••••	•••••	•••••	••••	••••	•••••	•••••	••••	••••	•••••	•••••	• • • •	•••••	•••••	•••••	•••••	••••••	••••
			•••••	••••	• • • • •	••••	••••	••••	•••••	••••	••••	••••	••••	••••	••••	•••••	•••••	••••	••••	•••••	•••••	••••	••••	•••••	•••••	• • • •	•••••	•••••	•••••	•••••	••••••	••••
		(ii)	Elem				ıas	th	e el	lec	tro	oni	ic s	strı	uct	ture	e 2.	8.1	18.4	ł. O	n t	he	ch	art a	lbov	e :	indi	icate	e th	e po	sition (1 ma	
		(iii)	State				se o	of e	eler	me	ent	S O	of t	he	gr	oup	p to	o w	hic	ch E	is	a n	ıeı	nbe	r.						(1 ma	
			••••••	••••	•••••	••••	••••	••••	•••••	••••	••••	••••	••••	••••	••••	•••••	•••••	••••	••••	•••••	•••••	••••	• • • •	•••••	•••••	• • • •	•••••	•••••	•••••	•••••	••••••	••••
		(iv)	Writ	te	an	eq	ua	tio	n t	o s	sho	OW	th	e a	ıcti	ion	of	hea	at c	on t	he	nit	rat	e of	ele	me	ent (C.			(1 ma	rk)
	(c)	Wh	3	lit	tres	s o	 f cl	 hlo	 orin	 ne g	gas	 s w	ver	e c	con	npl	ete	ly 1	 rea	cte	d w	 ith	el	eme	ent l	 D,		 375	g o	f the	e prod	 uct
			e for lar ga										elat	tiv€	e at	ton	nic	ma	ass	of	eleı	ne	nt	D. (Ato	m	ic n	nass	ch		ne = 35 (3 mar	

0	/ \	Give the		C (1	C 11	•		1
•	121	(JIVA the	namec	of the	TOLLOW	$m \alpha \alpha$	ranno	unde

(i) CH₃CH=CHCH₂CH₃ (1 mark)

.....

.....

(b) Ethane and ethene react with bromine according to the equations given below.

(i)
$$C_2H_{6(g)} + Br_{2(g)} \longrightarrow C_2H_5Br_{(l)} + HBr_{(g)}$$

(ii)
$$C_2H_{4(g)} + Br_{2(g)} \longrightarrow C_2H_4Br_{2(l)}$$

Name the type of bromination reaction that takes place in:

(i) (1 mark)

(ii) (1 mark)

.....

(c) Study the diagram below and answer the questions that follow.

(i) Write the equation for the combustion of butane. (1 mark)

.....

	(ii) The pH of substance K was found to be less than 7. Explain this o	bservation. (2 marks)
(d)	The polymerisation of tetrafluoroethene (C_2F_4) is similar to that of ethene (C_2H_4) .	(1
	(i) What is meant by the term polymerisation?	(1 mark)
	(ii) Draw the structural formula of a portion of the polymer obtained from the mo	onomer C_2F_4 . (1 mark)
(e)	State any two advantages that synthetic polymers have over natural polymers.	(2 marks)
(a)	The flow chart below summarizes the steps in the extraction of zinc. Study it and questions that follow.	d answer the
	Zinc ore Step I Concentrated ore Step II Zinc oxide	

Step III

Zinc metal

3.

(i)	Write down the formulae and names of two ores of zinc.	(2 marks)
(ii)	State two processes that are carried out in step I.	(1 mark)
(iii)	State two substances that can be used for the processes in step III.	(1 mark)
(iv)	Write a chemical equation for the process in step II.	(1 mark)
(v)	State one environmental impact of releasing sulphur (IV) oxide to the environr	nent. (1 mark)
(vi)	State any two uses of zinc metal.	(2 marks)
(b) Zir	nc oxide is reduced to zinc as shown by the equation.	
	$2O_{(s)} + C_{(s)} \longrightarrow Zn_{(s)} + CO_{(g)}$	
	lculate the mass of zinc obtained from 243 kg of zinc oxide and 24 kg of coke. = 12.0 , O = 16.0 , Zn = 65)	(2 marks)

(c) Study the set-up below and answer the questions that follow.

(i) State the observation made in the combustion tube T during the experiment. $(1 \ \text{mark})$

(ii) Identify gas Y.	(1 mark)
(iii) Write an equation for the reaction in combustion tube T.	(1 mark)

4. In an experiment, $50 \, \text{cm}^3 \, \text{of} \, 1.0 \, \text{M}$ sodium hydroxide solution was placed in a suitable apparatus and $5.0 \, \text{cm}^3$ portions of hydrochloric acid were added at intervals. The resulting mixture was stirred with a thermometer and the temperature taken after each addition. Both solutions were initially at 20°C .

Volume of HCl (cm³)	5	10	15	20	25	30	35	40
Temperature (°C)	21.5	22.5	24.5	25.0	25.6	27.5	28.0	28.0

(a)	(i)	Plo	t a gr	aph	of te	empe	ratu	re ri	se a	gain	st vo	lum	e of	the a	icid a	dded	l .		(3	ma	rks)

(iii) Calculate the enthalpy of neutralization of the alkali with hydrochloric acid. (Specific capacity of the mixture = $4.2kJkg^{-1}K^{-1}$ and density of the solution= $1.0~g/cm^3$). (2 marks)

	(b)	Draw the energy level diagr	cam for the reactio	n.	(2 marks)
	(c)	Suggest two possible source	es of error.		(2 marks)
					••••••
5.	(a)	The standard electrode pot	tentials for the eler	ments chloride and magnesium are:	
		$Cl_{2(aq)} + 2e^- \longrightarrow 2Cl^{-1}$	- (aq)	$E^{\theta} = +1.36v$	
		$Mg^{2+}_{(aq)} + 2e^{-} \longrightarrow N$	$\operatorname{Ig}_{(s)}$	$E^{\theta} = -2.36v$	
		(i) Which one of the two	o elements will a	ct as an oxidizing agent? Explain	your choice. (2 marks)

(ii) Calculate the electromotive force of a cell where the overall reaction is: (1 mark)

$$Cl_{_{2(aq)}}+Mg_{(s)}-\!\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!> MgCl_{_{2(aq)}}$$

(b) The table below gives the standard electrode potentials for divalent metals represented by the letters P, Q, R and S (not their true element symbols). Use it to answer the questions that follow.

Metal	E ^θ (Volts)
P	+1.50
Q	-0.44
R	+0.34
S	-0.76

(i) Which one of the metals cannot be displaced from a solution of its ions by any other metals in the table? Explain. (2 marks)

.....

(ii) Metals P and Q were connected to form a cell as shown in the diagram below.

1.	On the diagram, label the metals P and Q and indicate the ions in	(2 marks)
II.	Write equations (half equations) of the reactions taking place at the electrodes.	
	Electrode P	(1 mark)
	Electrode Q	(1 mark)
III.	State two functions of the salt bridge.	(2 marks)
IV.	What must be observed about the choice of a salt bridge?	(1 mark)
	A metallic couple of the metal S and metal Z produced a voltage of +1.71 volts (as S has the higher negative electrode potential). Calculate the standard electrode potential (S.E.P) for metal Z.	
II.	Arrange the metals P, Q, R and Z in their decreasing order of reactivity.	(1 mark)
		•••••

				•••••
The flow chart below shows the in the manufacture of some ammo			-	
Air Step 1 Nitrogen	gas Hy	drogen gas	ep 2 Natural gas	5
	Purific	er		
	Compressor	-		
	Heat exchanger			
		♦ Unrea	acted gases	
	Catalytic chamber			
Step 6	•	Step 3	N::: () 0	1
Compound Q Dilute H ₂ SO ₄	Ammonia gas		Nitric (V) acid	
	Step 4 ▼ H ₂ O _(l)		*	
	Ammonium hydroxide	-		
	Step 5 Phospho	ric (V) acid		7
		no (V) dola	Compound Z +	
	Compound R + Water		Water	
	vvalei			
a) Give the name of the:				
(i) process in Step 1.				(1 r

(b)	State one other source of hydrogen gas apart from natural gas.	(1 mark)
(c)	Explain why it is necessary to compress nitrogen and hydrogen in th	is process. (2 marks)
(d)	Write an equation for the reaction which takes place in Step 6.	(1 mark)
(e)	Name the catalyst and the reagents used in Step 3.	(1 mark)
(f)	Name compound Z.	(1 mark)
(g)	Give one commercial use of compound R.	(1 mark)
(h)	Ammonia gas was passed into water as shown below.	
	Ammonia gas — Water	
	(i) Explain why the pH of the solution is above 7.	(1 mark)

(ii)	What is the use of the inverted funnel?	(1 mark)
		• • • • • • • • • • • • • • • • • • • •

7. A radioactive material emitted radiations as shown below.

(a)	Which radiation contains helium particles?	(1 mark
(b)	Which radiation has the: (i) lowest ionizing power?	(1 mark
	(ii) lowest penetrating power?	(1 mark
		· • • • • • • • • • • • • • • • • • • •

(c) Radium Ra decays as shown below.

$$Ra \longrightarrow Rn + 4He$$

	Give the values of a and m.	(1 mark)				
(d)	Randon, Rn, undergoes alpha decay taking 15 days for the original mass to reduce Calculate the half-life of Randon.					
(e)	Study the following scheme and answer the questions that follow.					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	206 → Pb 82				
	Identify the particles emitted in: (i) I.	(2 marks)				
	(ii) II.					
(f)	State one difference between a chemical reaction and a nuclear reaction.	(1 mark)				
		••••••				