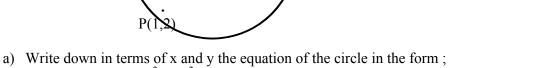
121/2 PAPER 2 SECTION 1 (50 MARKS)

Answer ALL questions in the spaces provided

1. Evaluate without using tables or calculator.

$\frac{\begin{pmatrix} 4 \\ \Pi \end{pmatrix}^2 \text{ of } \begin{pmatrix} 3 & -1 \\ 5 & 20 \end{pmatrix}}{(1^{4}/_5 + 1^{2}/_5) \div (^{1}/_5 + ^{9}/_{10})}$


2. Using a calculator, simplify

$$\frac{1.32 \text{ x } 1.62 + 2.64 \text{ x } 1.19}{0.66 \text{ x } 7.27 - 0.66 \text{ x } 2.27}$$

- 3. Use matrix method to determine the co-ordinates of the point of intersection of the two lines. (3mks) **BND**
 - 3x 2y = 13 , 2y + x + 1 = 0
- 4. Solve for x,

$$\left[\log_2 x\right]^2 + \log_2 8 = \log_2 x^4$$

5. P and Q are the points on the ends of the diameter of the circle below.

$$ax^2 + by^2 + x + y + c = 0$$
 (2mks) **BND**

b) Find the equation of the tangent at Q in the form ax + by + c=0. (2mks) **BND**

(2mks) **BND**

(3mks) **BND**

(3mks) *BND*

6. a) Expand
$$\left[a - \sqrt{5}\right]^5$$

b) Use your expansion to evaluate $a \sqrt{5} = 2.2361$ giving your answer to 5 significant figures. 7. Simplify the expression. $\frac{2x^2 - 3xy - 2y^2}{4x^2 - y^2} \div \frac{2x + y}{2x - y}$

9. Make P the subject of the formular. $YP - X + \frac{Q}{P} = O$

10.A farmer wishes to enclose a rectangular nursery against a long straight wall. He has 40m of
fencing wire. What is the largest area he can fence using the wire.(3mks) *BND*11.In the figure below, not drawn to scale, AX = 3cm, XB=3cm and $<CXB = 90^{\circ}$. Given that the
circle has a radius of 4.5cm. Calculate the length CD.(2mks) *BND*

- 12. Given that OA = 3i + 2j 4k and OB = 4i + 5j 2k. P divides AB externally in the ratio 3: -2. Determine the position vector of P in terms of i, j and k. (3mks) **BND**
- 13. Find the sum of the first six terms of the progression given; $Log 2x + log 4x + log 8x + log 16x + \dots$ leaving your answer in the form a log bx² where a and b are integers. (3mks) **BND**
- 14. A varies as B and inversely as the square root of C. When B is increased by 26%, C is reduced by 19%. Find the percentage change in the value of A. (4mks) *BND*
 15. Solve the equation 4 4 Cos² x = 4 sin x 1 for the range O⁰ ≤ x ≤ 360⁰. (3mks) *BND*
 © The Bondo District Examination Committee 2006 Mathematics 121/2 TURN OVER

16.

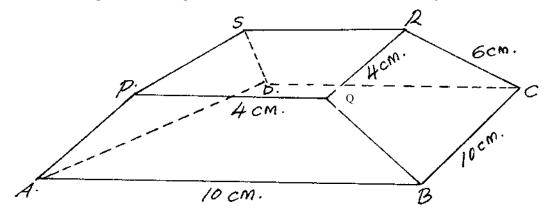
Given that $\tan \theta = x$, show that

(4mks) **BND**

(1mk) **BND**

(2mks) **BND**

(3mks) **BND**


 $\cos\theta\sin^2\theta + \cos^3\theta = 1$ x

SECTION II (50 MARKS)

Answer any FIVE questions

- The velocity of a particle is given as $V = 12t 2t^2$. 17. a) determine the distance of the particle in terms of t if the distance is 6 metres. When t = 1(2mks) **BND** sec. b) determine the distance moved by the particle during the third second. (2mks) **BND** c) calculate the maximum distance moved by the particle. (2mks) **BND** d) determine the acceleration after 2 seconds. (2mks) **BND** e) when is the velocity maximum? (2mks) **BND** A jewellery room is guarded by three policemen X, Y, and Z. A thief on his way in has to pass 18.
- X, Y and Z in that order. On his way out after stealing the jewellery has to pass Z, Y and X in that order. The probability of being caught by X is $\frac{1}{3}$, Y is $\frac{1}{5}$ and Z is $\frac{1}{4}$, on his way in and X is $\frac{5}{6}$, Y is $\frac{2}{5}$ and Z is $\frac{2}{3}$ on his way out. Find the probability that;
 - a) the thief is caught by policeman Z.
 - b) the thief is caught by Y on his way out.
 - c) the jewellery is stolen and the thief escapes.
 - d) the thief stole the jewellery but is caught on his way out.

19. The diagram below shows a frustum of a square based pyramid. The base ABCD is a square of side 10cm. The top PORS is a square of side 4cm and each of the slant edges are 6cm

a) Calculate the height of the pyramid. (4mks) **BND** b) A point X is $\frac{1}{4}$ of the height of the pyramid from the base. Calculate the angle that line AX makes with the base. (2mks) **BND** (4mks) **BND**

c) Calculate the angle between planes PORS and BCRO.

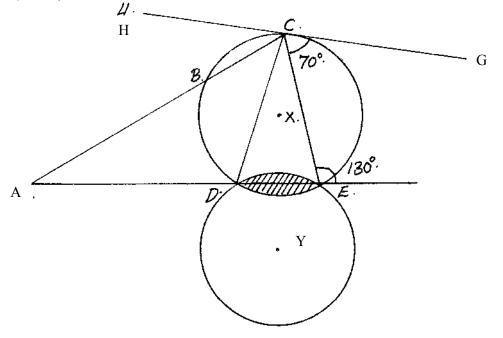
20. The masses of 50 loaves of bread were taken and recorded in the table below.

Mass	470 –	480 –	490 - 499	500 - 509	510 - 519	520 - 529	530 -	
(gms)	479	489					539	

© The Bondo District Examination Committee 2006

Mathematics 121/2

TURN OVER


No. of	1	3	11	21	8	4	2
loaves							
a) Using a	in assumed r	nean of 504.	5, calculate the	he mean mass	5.	(4mks) ⁻	*BND*
b) Use the	formula		$\int \sum d^2 f$	$\left(\Sigma fd \right)^2$	ſ		
		$S^2 = 0$	5, calculate the space of the second	$- \sum f$	}		
Wh	ere 1 x	с—а, синсин	the varian	ce.	J	(2mks) *	BND*
	d = _	c					

c) Calculate the standard deviation.

(3mks) **BND**

d) If 5 is added to each score and then divided by 3, write down the new standard deviation. (1mk) **BND**

21. The diagram below shows two intersecting circles with centers X and Y. HG is a tangent to the circle center X at C. < GCE = 70° and < CEF = 130° . Given that CB = 5cm, BA = 4cm, AE = 12cm and radius DY = 6cm

- a) Determine;
- (i) Angle DXE
- (ii) Length DE

b) Hence, calculate the area of the shaded region.

22. a) Complete the table below for the graph of $y = \cos(4x - 60^{\circ})$ for $O^{\circ} \le x \le 180^{\circ}$.

										(2111KS) " $DIVD$ "				
Х	0	15	30	45	60	75	90	105	120	135	150	165	180	
4x	0	60	120	180	240	300	360	420	480	540	600			
$4x - 60^{\circ}$	-60		60		180	240	300		420	480	540			
$y = Cos(4x - 60^{\circ})$	0.5		0.5	-0.5	-1		0.5							

b) Using the scale of 1cm to represent 15^{0} on the x - axis and 4cm to represent 1 unit on the yaxis, draw the graph of $y = \cos (4x - 60^{0})$ for $O^{0} \le x \le 180^{0}$. (3mks) **BND** c) Use your graph to solve the equations.

- (i) $1 + \cos(4x 60^{\circ}) = 1$
 - (ii) 5 Cos ($4x 60^{\circ}$)=1

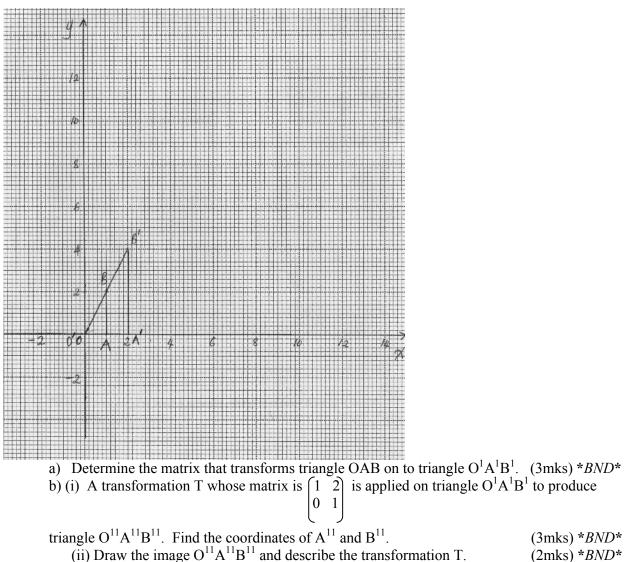
d) State the period and the phase angle of the graph.

23. The figure on the grid shows a triangular object OAB and its image $O^{1}A^{1}B^{1}$.

© The Bondo District Examination Committee 2006

Mathematics 121/2

(1mk) *BND*


2mks*BND*

(2mks) **BND**

(2mks) **BND**

(2mks) *BND*

(6mks) *BND*

24. To prepare two brands of coffee, A and B, a dealer uses 480kg of Robusta and 500kg of Arabica coffee. To prepare brand A, he uses 60% Robusta and 40% Arabica coffee. To prepare brand B he uses 50% Robusta and 50% Arabica coffee. The ratio of brand A to brand B does not exceed 3:5

a) Write down all inequalities representing the above information, other than y>0 and x>0

(3mks) **BND**

b) Draw the inequalities on the grid provided. (4mks) **BND**
c) The selling price per kg of brand A is shs.200, while that of brand B per kg is shs.300.

Determine the maximum revenue. (3mks) **BND**