CON		
NAME		INDEX NO
233/3 CHEMISTRY	-Past Pape	CANDIDATE'S SIGN
PAPER 3	xcsex	DATE
(PRACTICAL) JULY/AUGUST, 2014	s, ^t e ^{e.}	

KIHARU/KAHURO DISTRICT JOINT EXAMINATION - 2014

Kenya Certificate of Secondary Education CHEMISTRY PAPER 3 (PRACTICAL) TIME: 2¹/₄ HOURS

,ere vieit

TIME: 2¹/₄ HOURS

FOT

INSTRUCTIONS TO CANDIDATES:

• Answer ALL questions in the spaces provided for each question.

www.

- You are **NOT** allowed to start working with the apparatus for the first 15 minutes of 2¹/₄ hours allocated. This time enables you to read the questions and confirm all requirements have been provided to you.
- Electronic calculators may be used.
- Show all your working clearly.

FOR EXAMINER'S USE ONLY:

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	14	
2	10	
3	16	
TOTAL SCORE	40	

This paper consists of **6** printed pages. Candidates should check to ascertain that all papers are printed as indicated and that no questions are missing.

- 1.

- A dibasic acid solution P. - 0.5M sodium hydroxide solution Q. - Magnesium ribbon solid R. You are required to determ - Magnesium ribbon solid R. You are required to determine the concentration of the dibasic acid in moles per litre. 4.Lee

PROCEDURE I

Measure 50cm³ of solution P using a 100ml measuring cylinder and place it in a 100ml beaker. Stir gently with a thermometer and record its steady temperature, T_1 . Add all of solid R \mathfrak{R} fonce. Continue stirring and note the highest temperature reached, T₂. KEEP THE RESULTING SOLUTION FOR USE IN PROCEDURE II.

Table I (a)

(b)

FOT NOTE FIFE

 $(1\frac{1}{2}mks)$

	\sim	
2°	Final temperature, T_2 (°C)	
	Initial temperature, T_1 (°C)	

Determine the change in temperature, ΔT .

(1mk)

(c)	Calc	ulate the:	
	(i)	heat change for the reaction	
		Specific heat capacity = $4.2 \text{Jg}^{-1} \text{K}^{-1}$, density of solution = 1 gcm^{-3} .	(1mk)

(ii) moles of the dibasic acid that reacted with magnesium, given that the enthalpy change of this reaction is -323kJ mol⁻¹. $(\frac{1}{2}mk)$

PROCEDURE II

PROCEDURE II Place all the solution retained in procedured into a clean 100ml measuring cylinder. Add distilled water up to the 100ml mark. Transfer the resulting solution into a clean 250ml beaker and label the solution in the beaker as solution S. Fill the burette with solution S. c^{\diamond}

Using a pipette, transfer 25cm of solution Q into a clean conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with solution S. Record in the table below.

Table II. (d)

pet	Ι	II	III
Figal burette reading			
Solution Street Present Street			
Volume of solution S (cm ³)			

Calculate the:

FOR NOTE Free (e)

0

Average volume of S used. (i)

(1mk)

(4mks)

(ii) Moles of sodium hydroxide in the pipette volume of Q. (1mk)

(iii) Moles of the dibasic acid found in the average volume of S. (1mk)

(iv) Moles of the dibasic acid in 100cm³ of solution S. (1mk)

(v) Moles of the dibasic acid in 50 cm³ of solution P <u>before</u> reaction with magnesium. (1mk)

viteit (vi) efconcentration of the dibasic acid solution P in moles per litre. (1mk)

- For wore the 2. You are provided with:
 - 2.0M hydrochloric acid solution V.

- 0.4M sodium thiosulphate, solution W.

You are required to determine the rate of reaction between hydrochloric acid and sodium thiosulphate at different concentrations of sodium thiosulphate.

PROCEDURE

Using a 100ml measuring cylinder, measure 10cm³ of solution W, and dilute it to the 50ml mark with distilled water. Transfers into a 250ml conical flask. Make a thick biro pen mark on the filter paper provided. Measure 5cm³ of solution V using a 10ml measuring cylinder. Add this to the diluted solution W in the conical flask, START THE STOP-WATCH IMMEDIATELY, swirl the contents once and place it on the filter paper with a mark on it. Observe the pencil mark through the solution and record the time taken (t) in seconds for the mark to just disappear.

Repeat these procedures using 20cm³, 30cm³, 40cm³ and 50cm³ of solution W, each time dilute the solution to 50cm³ with distilled water. Fill and complete the table below.

(a) **Table III**.

(5mks)

Volume of	Volume of	Volume of	Concentration	Time (s)	Reciprocal
W (cm ³)	water (cm ³)	V(cm ³)	of $Na_2S_2O_3(M)$		of time (s^{-1})
10	40	5			
20	30	5			
30	20	5			
40	10	5			
50	0	5			

(c) From your graph, determine the time it would take for 35cm³ of solution W containing 15cm³ of water to make the pencil mark just disappear. (1¹/₂mks)

(d) path terms of rate of reaction, explain the shape of your graph.

(½mk)

- 3. You're provided with solid Y and X. Carry out the following tests and write your observations and inferences in the spaces provided.
 - (a) Place all solid Y into a boiling tube. Add about 15cm³ of distilled water into the solid and then shake the contents. Filter the mixture into clean conical flask. Preserve both residues and filtrate.
 - (i)

(ii) To about 2cm³ of the filtrate obtained, add ammonia solution drop by drop until excess.

Observation	Inference	
(1mk)	(1mk)	

(iii) To another 2cm³ of filtrate add 1cm³ of lead (II) nitrate solution followed by 1cm³ of dilute nitric acid.

at the	
Observation Observation	Inference
steekces	
X and .	
a viai	
papert (1mk)) (1mk)

Use a spatula to place the residue into a clean test tube. To this residue in a test tube add about 1cm³ of dilute nitric acid. Test any gas produced using lime water on a glass rod.

Observation	Inference	
(1mk)	$(1\mathrm{mk})$	

(b) (i) Scoop a spatula end full of solid X with metallic spatula and burn it on a non-luminous flame.

Observation	Inference
(1mk)	(1mk)

(ii) Place a spatula end full of solid X into a test tube, add about 10cm³ of distilled water and shake the contents. Divide the resulting mixture into three portions.

Observation	Inference
(1mk)	(1mk)

FOR NOTE Free KCSE

Qo (iv)

Observation	Inference	
	(1 1)	
(1mk)	(1mk)	