| NAME                             | DATE      | •••••• |
|----------------------------------|-----------|--------|
| INDEX NO.                        | SIGNATURE | •••••• |
| 233/2 CHEMISTRY LEE.             |           |        |
| PAPER 2 (THEORY)                 |           |        |
| JULY/AUGUST, 2014 TIME: 2 HOURS. |           |        |

## MBOONI WEST SUB - COUNTY JOINT EVALUATION TEST 2014

Kenya Certificate of Secondary Education.

233/2 CHEMISTRY
PAPER 2
(THEORY)

TIME: 2 HOURS.

## **INSTRUCTIONS TO CANDIDATES.**

- Write your name and index number in the spaces provided above.
- o Sign and write the date of exam in the spaces provided above.
- o Answer **ALL** the questions in the spaces provided.
- o Mathematical tables and silent electronic calculators may be used.
- o All working **MUST** be clearly shown where necessary.
- O This paper consists of 9 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

## FOR EXAMINER'S USE ONLY.

| Questions   | Maximum score | Candidates score |
|-------------|---------------|------------------|
| 1           | 9             |                  |
| 2           | 13            |                  |
| 3           | 12            |                  |
| 4           | 12            |                  |
| 5           | 12            |                  |
| 6           | 10            |                  |
| 7           | 12            |                  |
| Total score | 80            |                  |

© 2014, Mbooni West Sub – County Joint Evaluation Test
233/2
Chemistry
Paper 2 (Theory)



.....

Mbooni west joint examination

|                   |               |                        | oers.com                              |                                       |                                       |
|-------------------|---------------|------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| (ii               | i) Which ele  | ments belong to the    | 1 1 110.Y TTT                         |                                       | 233/2 Chemistry Paper 2<br>(1 Mark)   |
|                   |               |                        | O O O O O O O O O O O O O O O O O O O |                                       | · · · · · · · · · · · · · · · · · · · |
|                   |               |                        | XCOOT                                 |                                       |                                       |
|                   |               | ,                      | će.                                   |                                       |                                       |
|                   |               | .20                    |                                       | e table above? Explain                | (2 Marks)                             |
| •••               |               | 6/                     |                                       |                                       |                                       |
| <br>(v)           | ) How does    |                        | T compare with that of                | Υ                                     | (2 Marks)                             |
|                   |               | · Soot                 |                                       |                                       |                                       |
|                   |               |                        |                                       |                                       |                                       |
| (b)               | ) The table s | hows some propertie    | es and electron arranger              | ments of common ions o                | f elements                            |
| <sup>څړ</sup> د و | represented   | d by letters D to K. S | Study the information a               | nd answer the questions               | that follow.                          |
|                   | Element       | Formula of ion         | Ionic electron                        | Atomic radius                         | Ionic radius (nm)                     |
|                   |               |                        | arrangement                           | (nm)                                  |                                       |
|                   | D             | D <sup>-</sup>         | 2.8                                   | 0.072                                 | 0.136                                 |
|                   | Е             | E <sup>+</sup>         | 2.8.8                                 | 0.231                                 | 0.133                                 |
|                   | F             | F <sup>3+</sup>        | 2.8                                   | 0.143                                 | 0.050                                 |
|                   | G             | G <sup>2+</sup>        | 2.8.8                                 | 0.133                                 | 0.074                                 |
|                   | Н             | H <sup>2+</sup>        | 2.8                                   | 0.160                                 | 0.064                                 |
|                   | I             | I <sup>+</sup>         | 2.8                                   | 0.186                                 | 0.095                                 |
|                   | J             | $J^{3-}$               | 2.8.8                                 | 0.110                                 | 0.190                                 |
|                   | K             | K <sup>-</sup>         | 2.8.8                                 | 0.099                                 | 0.181                                 |
| (i)               | State the ato | omic numbers of ele    | ments F and G                         |                                       | (1 Mark)                              |
|                   | F             |                        |                                       |                                       |                                       |
|                   | •••••         |                        |                                       |                                       |                                       |
|                   | G             |                        |                                       |                                       |                                       |
|                   |               | metals that belong to  | o period 3.                           |                                       | (1 Mark)                              |
| ···               |               |                        |                                       | · · · · · · · · · · · · · · · · · · · |                                       |
| (11               | 1) Element I  | reacts violently with  | water. Write the equat                | ion for the reaction.                 | (1 Mark)                              |
|                   |               |                        |                                       |                                       |                                       |

Mbooni west joint examination 3 | P a g e

(1 Mark)

(iv) Why is the ionic radius of G smaller than its atomic radius

|    | (v) Compare and explain the reactivity of G and H                                                  | 233/2 Chemistry Paper 2<br>(2 Marks)    |
|----|----------------------------------------------------------------------------------------------------|-----------------------------------------|
|    |                                                                                                    |                                         |
|    | \$.5 <sup>6</sup> 6                                                                                |                                         |
| 3. | In the Haber Process, nitrogen and hydrogen are reacted over iron catalyst to give amm             | onia gas.                               |
|    | (a) Explain how hydrogen gas used in the process is obtained.                                      | (2 Marks)                               |
|    |                                                                                                    |                                         |
|    |                                                                                                    |                                         |
|    | (b) Write down an equation for the formation of ammonia from the raw materials                     | (1 Mark)                                |
| 0  | Ç <sup>*</sup>                                                                                     |                                         |
| Çe | (c) Explain how the following factors would affect the yield of ammonia.                           |                                         |
|    | (i) High pressure                                                                                  | (2 Marks)                               |
|    |                                                                                                    | • • • • • • • • • • • • • • • • • • • • |
|    | (ii) Low temperature                                                                               | (2 Marks)                               |
|    |                                                                                                    |                                         |
|    | (d) Write an equation for the reaction between ammonia and copper (II) oxide.                      | (1 Mark)                                |
|    |                                                                                                    |                                         |
|    | (e) Explain the effect of the iron catalyst on the yield of ammonia in the Haber Process           | (2 Marks)                               |
|    |                                                                                                    |                                         |
|    | (f) 0.34dm <sup>3</sup> of ammonia gas at s.t.p reacted with dilute sulphuric (VI) acid to form am |                                         |
|    | according to the following equation.                                                               |                                         |
|    | $2NH_{3(g)} + H_2SO4 (aq) \longrightarrow (NH_4)_2SO_{4 (aq)}$                                     |                                         |
|    | Determine the mass of the ammonium sulphate produced                                               | (2 Marks)                               |
|    | (N = 14, H = 1, S = 32, O = 16; molar gas volume at s.t.p = 22.4dm3)                               |                                         |
|    |                                                                                                    |                                         |
|    |                                                                                                    |                                         |
|    |                                                                                                    |                                         |

Mbooni west joint examination 4 | P a g e

Mbooni west joint examination 5 | P a g e

| (vi) The polymer D has a relative | molecular mass of 112 | , 000. Calculate the value of h | (C = 12, H = 11) |
|-----------------------------------|-----------------------|---------------------------------|------------------|
|                                   | c.se. Pass            |                                 | (2 marks)        |
|                                   | , 💥                   |                                 |                  |
|                                   | K. Lee                |                                 |                  |
| 4                                 | •                     |                                 |                  |

5. (I) Study the standard electrone potentials for the half cells given below and answer the questions that

$$K^{+}_{(aq)} + e^{-} \xrightarrow{\qquad \qquad } K_{(s)} \qquad -2.92$$

$$L^{+}_{(aq)} + e^{-} \xrightarrow{\qquad \qquad } L_{(s)} \qquad +0.52$$

$$C^{+}_{(aq)} + 2e^{-} \xrightarrow{\qquad \qquad } D_{(s)} \qquad 0.00$$

$$D^{+}_{(aq)} + 2e^{-} \xrightarrow{\qquad \qquad } E_{(aq)} \qquad +1.36$$

$$(a) Identify the strongest exidizing exent Explain$$

|                    | (5)                                                                                    |                                                    |           |
|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|-----------|
|                    | $E_{(aq)} + e^{-} \longrightarrow E_{(aq)}$ (a) Identify the strongest oxidizing agent | +1.36                                              |           |
| , o <sup>ç</sup> e | (a) Identify the strongest oxidizing agent                                             | . Explain.                                         | (2 marks) |
| COL MIC            |                                                                                        |                                                    |           |
| *                  |                                                                                        |                                                    |           |
|                    | (b) (i) Which two half cells would produ                                               | ice the highest potential difference when combined | (1 Mark)  |

(ii) Give the cell arrangement for b (i) above (1 Mark)

(c) Explain whether the reaction represented by the equation below can take place. (2 Marks)  $2A_{(aq)}^{+} + D_{(s)} \longrightarrow 2A_{(s)} + D_{(aq)}^{+}$ 

(II) 90cm<sup>3</sup> of acidified water was electrolysed using the set-up below.



| (a) Identify electrodes H and J | (1 Mark) |
|---------------------------------|----------|
|                                 |          |

| (b) Describe how gas F can be identified ( | (2 Marks) |
|--------------------------------------------|-----------|
|--------------------------------------------|-----------|

(c) In the above experiment 5A of electricity was passed through the acidified water for 3 minutes 21 seconds. Calculate the volume of gas G produced at room temperature and pressure.

(Molar gas at r.t.p = 
$$24,000$$
cm3,  $1F = 96,500$ C) (3 Marks)

.....

6. The following set up by a form four student was intended to measure the heat of combustion of methanol. Study it to answer the following questions.



Mbooni west joint examination 7 | P a g e

|      | The results are as follows below                                                                                                                                                                   | 233/2 Chemistry Paper                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|      | Initial temperature of water = 21.50C                                                                                                                                                              |                                       |
|      | The results are as follows below  Initial temperature of water = 21.50C  Final temperature of water = 30.00C  Initial mass of bottle + methanol \$85.10g  Final mass of bottle + methanol = 84.78g |                                       |
|      | Initial mass of bottle + methanol \$85.10g                                                                                                                                                         |                                       |
|      | Final mass of bottle + methanol = 84.78g                                                                                                                                                           |                                       |
|      | Specific heat capacity of water = 4.2kJ/kg/°c                                                                                                                                                      |                                       |
|      | (a) Use the results above to calculate the molar heat of combustion of methanol, CH <sub>3</sub> C                                                                                                 | ЭН                                    |
|      | (C = 12, O = 0.6, H = 1)                                                                                                                                                                           | (3 Marks)                             |
|      |                                                                                                                                                                                                    | (0 1/10/11/5)                         |
|      |                                                                                                                                                                                                    |                                       |
|      | ······································                                                                                                                                                             |                                       |
|      | (b) From the calculation in (a) above, is this reaction endothermic or exothermic?                                                                                                                 | (1 Mark)                              |
| nore | · ` `                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · |
| •    |                                                                                                                                                                                                    |                                       |
|      | (c) The accurate (theoretical) volume of heat of combustion of methanol is -638kJ/mo                                                                                                               | le. How does this                     |
|      | volume compare with the one in (a) above?                                                                                                                                                          | (2 Marks)                             |
|      |                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |
|      |                                                                                                                                                                                                    |                                       |
|      |                                                                                                                                                                                                    |                                       |
|      |                                                                                                                                                                                                    |                                       |
|      | (d) Write the thermochemical equation for the combustion of methanol                                                                                                                               | (1 Mark)                              |
|      | •                                                                                                                                                                                                  |                                       |
|      |                                                                                                                                                                                                    |                                       |
|      | (e) Draw an energy level diagram for the above reaction.                                                                                                                                           | (3 Marks)                             |
|      |                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |
|      |                                                                                                                                                                                                    |                                       |
|      |                                                                                                                                                                                                    |                                       |
|      |                                                                                                                                                                                                    |                                       |
|      |                                                                                                                                                                                                    |                                       |

8 | P a g e Mbooni west joint examination

7. The flow chart below shows the extraction zinc from zinc ore. Study it and answer the questions that Gas P follow. Gas Q Roaster CaCO<sub>3</sub> ZnS Roaster Ř S Reduction chamber Molten zinc (i) Give the common names of the ores. (2 Marks) ZnS (b) CaCO<sub>3</sub> (ii) Name the gases P and Q (2marks) (a) P (b) Q (iii) Name the solids R and S (2marks) (a) R (b) S (iv) Write a chemical equation for the reaction that produces zinc metal (v) Which is the purpose of adding limestone in the reaction chamber. (vi) Give 2 uses of zinc metal (2 Marks) (vii) Name two other industries that can be established alongside the zinc extraction plant.

Mbooni west joint examination 9 | P a g e