\qquad
\qquad
School: \qquad Date: \qquad
\qquad
121/1
MATHEMATICS
PAPER 1
DECEMBER 2021
TIME: $2 \underline{1 ⁄ 2}$ HOURS

MOKASA II JOINT EXAMINATION-2021
 Kenya Certificate to Secondary Education
 MATHEMATICS (PAPER 1)

TIME: $2 ½$ HOURS

Instructions

- Write your name, class, admission number, school, date and signature in spaces provided above.
- The paper contains two sections \boldsymbol{A} and \boldsymbol{B}.
- Answer all questions in section \boldsymbol{A} and any five questions from section \boldsymbol{B} in the spaces provided below each question.
- Show all the steps in your calculations giving your answers at each stage in the spaces below each question.
- Non-programmable silent electroniçcalculator and mathematical tables may be used except where stated otherwise.

For Examiner's Use Only

SECTION A

1	2	3	4	5												
						6	7	8	9	10	11	12	13	14	15	16
TOTAL																

SECTION B

17	18	19	20	21	22	23	24	TOTAL

PERCENTAGE SCORE

Answer all questions in this section in the spaces provided

1. The sum of two numbers exceeds their product by one. Their difference is equal to their product less five. Find the two numbers.
(3 marks)
2. Musa has twenty shillings more than Aisha. After he spends a quarter of his money and Aisha $1 / 5$ of hers, they find that Aisha has 10 shillings more than Musa. How much money did both have?
(4 marks)
3. The number 2942 m 08 is divisible by 11 . Find the least value of m and the square of m.
(3 marks)
4. Give the inequalities L2, L2, L3 and L4 which define the region R in the inequalities shown below.

5. Given $\mathrm{P}=\left(\begin{array}{cc}2 & 0 \\ -2 & 1\end{array}\right), \mathrm{Q}=\left(\begin{array}{cc}4 & -1 \\ 3 & 2\end{array}\right)$ and $\mathrm{R}=\left(\begin{array}{cc}2 & -1 \\ -4 & 5\end{array}\right)$ find $\mathrm{PQ}+\mathrm{R}$.
(3 marks)

1 US dollar = 118 Japanese Yen
1 US dollar = 78 Kenyan Shillings.
Calculate the duty paid in Kenya Shillings.
7. Solve the equation;
(3 marks)
$4^{x}+2^{2 x+1}=36$
8. Line AB is perpendicular to a line whose equation is $y-2 x+7=0$ and passes through point $(-4,5)$. Determine the equation of $A B$ in the form $y=m x+c$.
9. Simplify the following expression.

$$
\frac{\cos ^{2} \theta-1}{\sin \theta}
$$

10. Without using a calculator evaluate using squares, square roots and reciprocal tables the following:-
$\frac{2}{30.16^{2}}+\frac{10}{\sqrt{588.3}}$
11. Two of the exterior angles of a polygon are 63° each. The remaining exterior angles are each 26°. Determine the number of sides of the polygon.
(3 marks)
12. A number when divided by 10,15 and 18 , the reminders are 7,12 and 15 respectively. Find the lowest number.
(3 marks)
13. The figure below shows part of a circle. Complete the circle and determine the radius and the centre of the circle.
14. In the figure below, DC is a tangent to the circle centre O a D . AOBC is a straight line meeting DC at $\mathrm{C} . \mathrm{DC}=12$ and $\mathrm{BC}=8$. Find the radius, f the circle.
(3 marks)

15. x varies directly as the cube of y and inversely as the square root of z. When $x=24, y=2$ and $z=16$. Find z in terms of x and y.
(3 marks)
16. Evaluate; $\int_{-1}^{2}\left(-x^{3}+5 x-2\right) d x$
(4 marks)

SECTION B

Answer any five questions in this section

17. The figure below is a model representing an open storage container. The model whose total height is 80 cm is made up of a frustum top, a hemispherical bottom and the middle part is cylindrical. The diameter of the top of the frustum is 28 cm , the base of the frustum diameter of the cylindrical and hemispherical part is 42 cm . The height of the cylindrical part is 29 cm .

(a) Calculate the surface area of the model
(5 marks)
(b) The actual height of the container is 8 metres. Calculate the capacity of the container to the nearest litre.
(5 marks)
18. The table below shows marks scored by 40 students in a Mathematics test.

Marks	$\mathbf{3 0 - 3 9}$	$\mathbf{4 0 - 4 9}$	$\mathbf{5 0 - 5 9}$	$\mathbf{6 0 - 6 9}$	$\mathbf{7 0 - 7 9}$
No. of Students	2	10	13	8	7

(a) Using and assumed mean of 54.5, calculate the mean mark.
(b) Calculate the variance.
(c) Calculate the standard deviation.
19. Two policemen were together at a road junction. Each had a walkie talkie. The maximum distance at which one could communicate with the other was 2.5 km . One of the policemen walked due East at $3.2 \mathrm{~km} / \mathrm{h}$ while the other walked due North at $2.4 \mathrm{~km} / \mathrm{h}$. The policeman who headed east travelled for x km while the one who headed North travelled for y km before they were unable to communicate.
(a) Draw a sketch to represent the relative positions of the policemen. (1 mark)
(b) (i) From the information above form two simultaneous equations in form of x and y.
(2 marks)
(ii) Find the value ofx and y.
(5 marks)
(iii) Calculate the time taken before the police were unable to communicate.
(2 marks)
20. Complete the table of the functions $y=1+x-2 x^{2}$
(2marks)

x	-3	-2	-1	0	1	2	3
$-2 x^{2}$	-18			0	-2		
1	1	1	1	1	1	1	1
y	-20	-9			0		

b) Draw the graph of
the function $y=1+x-2 x^{2} \quad$ on the graph paper provided (3marks)

	-																			
					,															
,																				
																*				
															*					
													-							
-												-								
											${ }^{1}$									
								-												
						\%														
					6															
$\#$																				
	-				-											-				-
$\begin{aligned} & m+1 \\ & \text { c) } \end{aligned}$	Use you	our g	graph	to find	nd the	e valu	e for	x in	the	equa	(1)			$x-2 x^{2}$					mark)	

ii) $5+2 x-2 x^{2}=0$
iii) State the maximum point of the function $y=1+x-2 x^{2}$
21. (a) The position vectors of points A and B are \mathbf{a} and \mathbf{b} respectively. C is another point with position vectors $\boldsymbol{c}=\frac{6}{4} \boldsymbol{b}-\frac{2}{4} \boldsymbol{a}$. Express in terms of \boldsymbol{a} and \boldsymbol{b} vectors.
(i) $\overrightarrow{A B}$
(1 mark)
(ii) $\overrightarrow{C B}$
(1 mark)
(iii) $\overrightarrow{C A}$
(1 mark)
(iv) Show that A, B and C are collinear.
(v) Determine the ratio $\mathrm{AB}: \mathrm{BC}$
(b) Given that $\overrightarrow{O P}=3 i+8 j-3 k$ and $\overrightarrow{O P}=3 i+2 j+2 k$. Find $|P Q|$ correct to 2 dp .
22. (a) Given a curve $y=10+3 x-x^{2}$, use the trapezoidal rule with 5 trapezia to estimate the area bounded by the curve from $x=-1$ to $x=4$. (4 marks)
(b) Find the actual area under the curve by integration method from $x=-1$ to $x=4$.
(c) Find the percentage error introduced by the approximation.
(2 marks)
23. (a) A man standing 20 m away from a building notices that the angles of elevation of the top and bottom of a flagpole mounted at the top of the building are 64° and 62° respectively. Calculate the height of the flagpole.
(4 marks)
(b) The angles of elevation of the top of a tree from P and Q which are 30 m apart are 22° and 32° respectively. Given that the two points are on the same side of the tree and on a straight line, determine the height of the tree. (6 marks)
24. The displacement s metres after t seconds is given as $s=-t^{3}+3 t^{2}+4$.
(a) Find its initial acceleration.
(3 marks)
(b) Calculate;
(i) The time when the particle was momentarily atrest.
(ii) The acceleration in m / s^{2} when $t=3 s$
(c) Find the maximum velocity attained by the particle.

