Name \qquad

Adm No

Class \qquad
Imdex Number \qquad

121/2

MATHEMATICS ALT. A

Paper 2
Time: $2^{1 ⁄ 2}$ Hours
December 2021

BUNAMFAN CLUSTER EXAMINATION 2021

Kenya Certificate of Secondary Eduction
121/2
MATHEMATICS ALT. A

Paper 2

Time: $\mathbf{2}^{1 ⁄ 2}$ Hours

Instructions to Candidates

1. Write your name, Admission Number and Stream in the spaces provided at the top of this page.
2. Show all your workings in the spaces provided below each question.
3. This paper contains two sections, Section I and Section II.
4. Answer all the questions in section I and any five questions in section II.
5. All the questions in section II carry equat marks.
6. Negligence and slovenly work will be penalized.
7. Mathematical tables and non-programmable electronic calculators maybe used.

FOR OFFICIAL USE ONLYe

1	2	3	4		6	7	8	9	10	11	12	13	14	15	16	Total

17	18	19	20	21	22	23	24	Total

SECTION I (50 Mks)

(Answer all questions in this section)

1. Use logarithms tables to evaluate. $\left(\frac{130.9}{27.68 \times 100.9}\right)^{2 / 3}$
(4 marks)
2.

A trader mixes grade A coffee costing sh 600 pekkg, with grade B coffee costing sh. 280 per kg in the ratio $3: 5$. Find the price at which me must sell 1 kg of the mixture to make a profit of 20%.
3. Given that $\cos \theta$ 號 $1 / \sqrt{3}$, find the value of $\frac{\tan \theta+\sin \theta}{\cos \theta}$ in its simplest form. (Leave your answer in serrd form)
4. Determine the equation of the normal to the curve $y=3 x^{2}-4 x+5$ at the point $(1,4)$.
(3 marks)
5. Water flows from a pipe at the rate of 250 litres per minute. If the pipe is used to drain a tank full of water measuring 3.2 m by 2.5 m by 2 m , how long would it $\mathrm{ta}_{\text {ake }}$ to drain the tank completely when it is $\frac{3}{4}$ full?
6. Make N the subject of the formula $t=\frac{5 P-N}{3 N-P}$
7. Determine the period and amplitude of the function. $\mathrm{y}=4 \sin \left(2 \mathrm{x}-20^{\circ}\right)$
(2 marks)
8. In the figure below, $\mathbf{P A}$ is 1.2 cm shorter than $\mathbf{P D}$. Given that $\mathbf{A B}=15.6 \mathrm{~cm}, \mathbf{C D}=9.6 \mathrm{~cm}$,

Determine the length of PA.
(3 marks)
9. Without using logarithms table or calculator, solve for x in;
$\log 5-2+\log (2 x+10)=\log (x-4)$
10. In an arithmetic progression, the $20^{\text {th }}$ term is 92 and the sum of the first 20 terms is 890 . Calculate;
(a) The first term
(b) The common difference
11. Solve for θ in the equation $\operatorname{Sin}\left(3 \theta+120^{\circ}\right)=\frac{\sqrt{3}}{2}$ for $0 \operatorname{si}^{2} \theta \leq 180^{\circ}$.
12. (a) Expand and simplify the expression $\left(4 x-\frac{y}{2}\right)^{5}$ up to the third term. (2 marks)
13. The cost per head for catering for a party is partly constant and partly varies inversely as the number of people expected. The cost per head for a party of 100 people is Sh. 1860 and that for 180 people is sh. 1060. Find the cost per head for 200 people.
14. A body is moving along a straight line and its acceleration after \mathbf{t} seconds is $(5-2 \mathrm{t}) \mathrm{ms}^{-2}$. Its initial velocity $\mathbf{V m s}^{-1}$ is $4 \mathrm{~ms}^{-1}$. Find \mathbf{V} in terms of \mathbf{t}.
15. Determine the turning points for the curve $y=5 x-8 x^{2}+x^{3}$.
(4 marks)
 draw the locus of a point A such that $\angle \mathrm{PAQ}=60^{\circ}$ and on it mark point A such that $\mathrm{PA}=\mathrm{QA}$

SECTION II (50 Mks)

(Answer any FIVE questions from this section)

17. The table below represents marks scored in a mathematics test.

Marks	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$
No. of students	2	6	7	13	6	4	2

Using an assumed mean of 44.5, Determine
i) Mean marks for the test
ii) Standard deviation
iii) Determine the pass mark if 30% of the students failed the exam.
18. (a) Draw the curve of the function $y=18+3 x-x^{2}$ for $-3 \leq x \leq 5$.

Use a scale of 2 cm to represent 1 unit on x axis and 1 cm to represent 2 unit on y axis.

x	-3	-2	-1	0	1	2	3	4	5
y									

(b) Find the actural area bounded by the curve, the x -axis and the line $\mathrm{X}=5$. (2 marks)

(c) By using trapezoidal rule with five ordinates, Estimate the area bounded by the curve, the x -axis and the line $\mathrm{X}=5$.
(d) Find the percentage error introduced by the approximation?
19. An airplane leaves town $\mathbf{A}\left(83^{\circ} \mathrm{N}, 155^{\circ} \mathrm{W}\right)$ to town $\mathbf{B}\left(40^{\circ} \mathrm{N}, 25^{\circ} \mathrm{E}\right)$ using the shortest route at a speed of 450 knots. (Take $\boldsymbol{\pi}=\frac{22}{7}$ and radius of the earth $\mathbf{R}=6370 \mathrm{~km}$).
(a) (i) Calculate the distance between \mathbf{A} and \mathbf{B} in nautical miles.
(ii) Calculate the time taken to travel from town \mathbf{A} to \mathbf{B}
(b) From B, the plane flies westwards along the latitude to town $\mathbf{C}\left(40^{\circ} \mathrm{N}, 13^{\circ} \mathrm{W}\right)$. Calculate the distance $\mathbf{B C}$ in kilometers.
(c) From town \mathbf{C}, the plane took off at $3: 10$ pm towards town $\mathbf{D}\left(10^{\circ} \mathrm{N}, 13^{\circ} \mathrm{W}\right)$, at the same speed. At what time did the plane land at \mathbf{D} ?
20. The matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ represent a transformation T, triangle $A B C$ where $A(1,1) B(5,1)$ and $C(2,4)$ is mapped onto $A^{1} B^{1} C^{1}$ by T.
a) i) Find the coordinates of the image $A^{1} B^{1} C^{1}$ of $A B C$ under T. (2 marks)
ii) On the grid provided draw $A B C$ and its image $A^{1} B^{1} C^{1}$
(2 marks)

b) Draw $A^{2} B^{2} C^{2}$ image $A^{1} B^{1} C^{1}$ under an enlargement center $(0,0)$ scale factor - $1 / 2$. (2 marks)
c) Find a single matrix that would $A^{2} B^{2} C^{2}$ onto $A B C$.
21. The probability that Hilda, Lucy and Caroline will be late for breakfast on any one morning are $\frac{1}{4}, \frac{1}{3}$ and $\frac{1}{5}$ respectively.
a) Using a probability tree diagram find the probability that:-
(i) None of them will be late
(ii) Only one of them will be late
(iii) At least one of them will be late
22. The figure below represents a square based pyramid with equilateral triangles $\mathrm{AB}=5 \mathrm{~cm}$

Calculate the
a) Height of the triangular faces
b) Length of AC
c) Angle between VA and ABCD
d) Angle between VAD and ABCD
e) Angle between VAB and VCD
23. A triangular plot ABC is such that $\mathrm{AB}=36 \mathrm{~m}, \mathrm{BC}=40 \mathrm{~cm}$ and $\mathrm{AC}=42 \mathrm{~m}$
(a) Calculate
(i) Area of the plot in square metres
(3 marks)
(ii) Acute angle between the edges AB and BC
(b) A circular fence passes through vertices A, B and C. A water tap is to be installed inside the plot such that the tap is equidistant from each of the vertices A, B and C. Calculate
(i) The distance of the tap from vertex A
(ii) The area between the circular fence and the triangular plot
24. Fill the table below for the function $y=x^{3}+4 x^{2}-x-6$ for $-5 \leq x \leq 3$.
(2 marks)

X	-5	-4	-3	-2	-1	0	1	2	3
Y	-26								

a) On the grid provided draw the graph of $y=x^{3}+4 x^{2}-x-6$ for- $5 \leq x \leq 3$. Use the scale of 1 cm to represent 1 unit horizontally and 1 cm to represent 10 units vertically.

b) Useyour graph to solve the following;
i. $\quad x^{3}+4 x^{2}-x-6=0$
(2 marks)
ii. $\quad 3 x^{3}+12 x^{2}-15 x-21=0$
(3 marks)

