\qquad

Class \qquad Signature. \qquad

232/1
PHYSICS
PAPER 1
(THEORY)

December 2021

TIME: 2 HOURS

BUNAMFAN CLUSTER EXAMINATION 2021

Kenya Certificate of Secondary Education (K.C.S.Eか
232/1
PHYSICS
PAPER 1
(THEORY)
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- Write your Name, Index number and Class in the spaces provided above.
- This paper consists of two sections: A and B
- Answer all the questions in the spaces provided
- All working must be clearly shown.
- Mathematical tables and elegctronic calculators may be used
- Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$
- Density of mercury $\mathcal{F}=13600 \mathrm{~kg} / \mathrm{m}^{3}$

For Examiner's Use

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
A	1-12	25	
B	13	12	
	14	10	
	15	10	
	16	12	
	17	11	
TOTAL		80	

This paper consists of $\mathbf{1 1}$ printed pages. Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

SECTION A (25 MARKS)

1. The figure below shows a body resting on an inclined plane. Indicate the normal reaction
(1 mark)

2. The figure below shows two identical bulbs A and B painted white and black respectively connected with a pipe containing water at the same level at the room temperature.

State and explain the observation made whenice cold water is poured on the bulbs

3. A boy blows through the mouth of a hollow vuvuzela as shown below. A light cork is suspended freely by astring as shown. Giving reason indicate the path taken by the cork

\qquad
\qquad
\qquad
4. The figure below shows a hollow metal cylindrical tin. A student used a vernier caliper and a micrometer screw gauge to determine the external and internal diameter of the tin respectively. The readings of the instruments are as shown below

Determine the thickness of the metal used to make the tin in SI unit leaving your answer in standard form
5. The figure below shows the level of mercury and water in a beaker.

Explain the difference in the shape of the meniscus
\qquad
\qquad
\qquad
6. When an inflated balloon is placed in a refrigerator, it is noted that its volume reduces. Use kinetic theory to explain this observation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. The figure below shows a solid just before being released into a liquid of the same density as the solid. On the same diagram draw the observation made when the solid is released
(1 mark)

8. The figure below shows a glass tumbler partly filled with water at room temperature.

Briefly explain what happens to the stability of the tumbler when the water is heated

9. The figure below shows some airtrapped in a glass tube, the tube is inverted in a dish containing mercury.

Given that the atmospheric pressure is 760 mmHg and the height of mercury column in the glass is 550 mm determine the pressure of the air trapped in the tube in mm Hg . (2 marks)
10. The figure below shows a hydraulic machine in equilibrium while supporting a load when a force of 100 N is applied one of the pistons. The cross section area of the pistons are as shown. Determine the weight of the load

11. A metal ball suspended vertically with a light string of length 4 m is displaced through an angle θ as shown in the diagram below. The body is released from A and swings past the lowest point B. Given that its velocity at point B is $4 \mathrm{~m} / \mathrm{s}$, detervine angle Θ

12. The figure below shows a uniform bar balanced by forces F_{1} and F_{2}. Determine the value of F_{1}

Fixed Frictionless pulley

Answer ALL the questions in the spaces provided

13. (a) An object of mass 50 g is dropped from a height of 80 m to hit the ground below
(i) For the motion, on the same axes, sketch and label the graphs of :
I. Kinetic energy against time
II. Potential energy against time
(ii) Determine how long it takes to reach the ground
(iii) Determine the nomentum as it hits the ground
(b) Engine oil licks on the ground from a lorry as it decelerates uphill. The oil drops are shown below

i. On the same diagram indicate the direction of the lorry with an arrow
ii. Determine the acceleration of the deceleration of the lorry
14. The figure below shows a system used to lift a septic slabof weight 150 N by applying a force of 50 N on a light bar as shown. The radii of the pulley belt wheels are as indicated in the diagram

a. Tension T of the vertical string
b. MA of the system
c. VR of the system
(3 marks)
d. Efficiency of the system
(2 marks)
15. a) State three factors that affect the toughness of a spring

b) When a mass of 120 g is applied to a spring the pointer reads 6 cm . A pan, in which a mass of 210 g is placed, is now suspended from the spring and the pointer reads 14 cm . When the 210 g mass is removed from the pan the pointer reads 4 cm .
i. Draw a diagram or diagrams to represent the information above
ii. Determine the mass of the pan.
c) The figure below shows a mass 200 g placed on a frictionless surface and attached to a spring. The spring is compressed and released. Given that the elastic potential energy of the compressors spring is $2.7 \times 10^{-2} \mathrm{~J}$. Determine the maximum speed with which the blocks moves

16. The sphere below has a volume of 0.1 litres. It is held with a tight string at the base with $1 / 4$ of its volume in liquid A of density $380 \mathrm{~kg} / \mathrm{m}^{3}$ while the rest is in Liquid B of density $700 \mathrm{~kg} / \mathrm{m}^{3}$. The tension of the string is 0.32 N

Find
a. Mass of liquid A displaced
(2 marks)
b. Mass of liquid B displaced
(2 marks)
c. Upthrust experienced by the sphere
d. Mass of the sphere
e. Density of the sphere
17. A girl joins two 20 g masses A and B on a string and whirls them in a vertical circle Centre O of radius 50 cm as shown below. The bodies maintained an angular velocity of $10 \mathrm{Rad}^{-s}$

Determine:
a. The linear velocity of body A
c. The tension of the string
i. $\quad \mathrm{T}_{1}$
(2 marks)
ii. T_{2}
iii. T_{3}

