PHYSICS PAPER 232/2 K.C.S.E 1998

1.a) In an experiment to determine thesstrength of an electromagnet, the weight of pins that can be supported by the electromagnet, was recorded against the number of turns. The current was kept constant throughout the exéériment. Table 1 shows the data obtained.

Number of turns, n_{\times},	0	4	8	12	16	20	24	28	32	36
Weight, of pins $3(\mathrm{x})$	0	4	14	30	58	108	198	264	296	300

Table 1
(i) \times Plot a graph of weigh, W (y -axis) against the number of turn's n
(ii) e^{∂} Use the domain theory to explain the nature of the curve.
(Gi) Sketch on the same axes, the curve that would be obtained using a higher current.
b) Using a labeled diagram, explain the working of a simple relay.
ea) You are provided with two straight open tubes each about 1 m long, a sound source, a sound detector and a reflecting surface. With the aid of a labeled diagram, describe an experiment to show that the angle of incidents is equal to reflection for sound waves.
b) Fig. 1 shows a block with a graduated side, and of dimension $4 \mathrm{~cm} \times-4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 16 \mathrm{~cm}$, just about to be lowered into a liquid contained in an overflow can.

Fig. 1
During an experiment with this set-up, the following information was recorded;
-The block floated with three quarters of it submerged
-Initial reading of balance $=0$ grammes
-final reading of balance $=154$ grammes.
Use the information to determine the density of the:
(i) Block
(ii) Liquid
(Use $\mathrm{g}=10 \mathrm{~ms} 2$. give your answers to 1 decimal place.)
3 a) A gun is fired vertically upwards from the top of 2 open truck moving horizontally at a uniform velocity of $50 \mathrm{~ms}^{-1}$. The bullet achieves a maximum height of 45 m . State with reason whether or not the bullet will land on the truck.
(i) Calculate the distance covered the truck just before the bullet reaches the level from which it was fired. (Use $g=1 \theta^{5} \mathrm{~ms}^{-2}$)
b) Figure 2 shows a set-up that' may be used to verify Boyle's law.

Fig 2
b) Fig 4 shows a photocell

(i) Labey the cathode and anode.
(ii) H 0 w are electrons produced in the cell/
(iii) 5 Draw a simple circuit including the photocell to show the direction of flow of current
Calculate the photon energy in ultraviolet radiation whose frequency is 8.60×10^{14} HZ. (Plank's constant h=6.63 $\times 10^{-34} \mathrm{Js}$)
A ray of white light is incident on one face of a rectangular glass prism.
i) Draw a ray diagram to illustrate the dispersion of white light by the prism, showing only the red ${ }^{\circledR}$ and violet (V) rays.
ii) On the same diagram drawn in (i) mark and label the initial angle of incidence, 1 , and the angles of reflection on the first face for red r_{R} and for violet r_{v}.
iii) Snell's law for the red and colours can be written as

$$
\mathrm{nr}=\frac{\operatorname{Sin} \mathrm{I}}{\operatorname{Sin} \mathrm{r}_{\mathrm{R}}}
$$

b) Calculate the critical angle for a material whose refractive index is 1.40 .

SECTION II

6. Fig 5 shows a circuit for charging and discharging a capacitor; e, through a variable resistor R, X Y and T are points on a two-way switch.

a) Explain how the charging and discharging processes are achieved.
b) Table 2 show the variation of the charge q with time t when a $500 \mathrm{u} F$ capacitor was discharged though a resistor.

Time, $\mathrm{t},(\mathrm{s})$	0	20	40	60	80	100
Charge, $0(\mu \mathrm{c})$	300	150	75	38	19	10

Table 2
(i) Plot a graph of charge 0 (y axis) against time.
(ii) Determine the current flowing in the circuit at $\mathrm{t}=30$ s. (Give your answer to 1 decimal place)

7 a) Fig. 6 shows an object, 0.3 cm high placed in front of a concave mirror. C is the centre of curvature of the mirror. The diagram is drawn to scale: ($1 \mathrm{~cm}: 2 \mathrm{~cm}$)
Draw a ray diagram, on figure 6, and determine the size of the image produced.

Table 3
i) Complete the table and plot a graph of $1 / v$ (y -axis) against $1 / \mathrm{u}$ (give your answers to 3 decimal places).
ii) From the graph, determine the focal length of the mirror.

