Name:	Index No
School:	Candidate's Sign
Date:	

232/1 PHYSICS PAPER 1 JULY/AUGUST 2011 TIME: 2 HOURS

BUSIA DISTRICT JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Physics Paper 1

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above.
- Answer *all* the questions both in section A and B in the spaces provided below each question
- All workings *must* be clearly shown; marks may be awarded for correct steps even if the answers are wrong.
- Mathematical tables and silent electronic calculators may be used.

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
Section A	1-11	25	
Section B	12	10	
	13	11	
	14	11	
	15	13	
	16	10	
	TOTAL	80	

For Examiners' Use Only

 This paper consists of 12 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

 © Busia- 2011
 Form Four

 1
 Physics 232/1

SECTION A 25 MARKS

1. The figure below shows an empty beaker placed on the top of a pan calibrated in grammes.

50ml of alcohol of density 0.8g/cm³ was added to the beaker. Show on the diagram the new pointer position.

2. The diagram below shows a portion of a micrometer screw gauge used to measure the diameter of a metal pipe. The reading on the gauge when the jaws were fully closed without the pipe was 0.012cm

	What is the length of the pipe?		
3.	Given that the radius of the pipe is 1.20 cm, find its volume.	(1mk)	

4. a) What is surface tension? (1mk)

b) Figure 2 shows a funnel dipped into a liquid soap solution.

Physics 232/1

Explain what happens to the soap bubble when the funnel is removed.			

Figure 3 shows a hydraulic press system using a lever of negligible mass on the side of a small piston pivoted at point **P**. A force of 100N is applied at **R**.

Fig. 3

Use this information to answer question 5 and 6.

5. Calculate the force **F** exerted by small piston on the liquid.

(2mks)

6. Find the weight of the Bale supported by the large piston

(2mks)

© Busia- 2011

7. Figure 4 shows apparatus used to observe the behaviour of smoke particles in a smoke cell. Fig. 4

	Explain the observation, when the heater is switched on for a short time.	(2mks)
9.	The stability of a body can be increased by increasing the base area and lowering its centre of gravity. State one way of lowering its centre of gravity.	(1mk)

Figure 7 shows air flowing through a pipe of non-uniform cross-sectional area. Two pipes **A** and **B** are dipped into liquids as shown.

Air flow \longrightarrow (Imk) Implies How (Imk) Implies How (Imk) a) Indicate the levels of the liquids in Pipe A and pipe B. b) Explain your answer in (a) above. 10. Figure 8 shows dots which were made by a ticker timer-tape attached to a trolley. Fig. 8 $\xrightarrow{\bullet} & \bullet &$				m_{χ}	///////	7111.	/			
a) Indicate the levels of the liquids in Pipe A and pipe B. (1mk) b) Explain your answer in (a) above. (1mk) 10. Figure 8 shows dots which were made by a ticker timer-tape attached to a trolley. Fig. 8 $\overline{A \ B \ C}$ If the frequency used was 50 Hz, determine a) the velocities between AB and BC (2mks)		Air flov	N	۳Z		▶				
a) Indicate the levels of the liquids in Pipe A and pipe B. (1mk) b) Explain your answer in (a) above. (1mk) 10. Figure 8 shows dots which were made by a ticker timer-tape attached to a trolley. Fig. 8 $\overbrace{A \\ B \\ C}$ If the frequency used was 50 Hz, determine a) the velocities between AB and BC (2mks)		ΖĹ	77774777		ZДĮ	////	7			
a) Indicate the levels of the liquids in Pipe A and pipe B. (1mk) b) Explain your answer in (a) above. (1mk) 10. Figure 8 shows dots which were made by a ticker timer-tape attached to a trolley. $Fig. 8 \xrightarrow[A]{} \bullet \bullet$										
a) Indicate the levels of the liquids in Pipe A and pipe B. (1mk) b) Explain your answer in (a) above. (1mk) 10. Figure 8 shows dots which were made by a ticker timer-tape attached to a trolley. Fig. 8 A B C (2mks)										
a) Indicate the levels of the liquids in Pipe A and pipe B. (1mk) b) Explain your answer in (a) above. (1mk) (1mk) 10. Figure 8 shows dots which were made by a ticker timer-tape attached to a trolley. Fig. 8 A B C If the frequency used was 50 Hz, determine a) the velocities between AB and BC (2mks)		Liquid				 	Liqui	d		
10. Figure 8 shows dots which were made by a ticker timer-tape attached to a trolley. Fig. 8 A B C If the frequency used was 50 Hz, determine a) the velocities between AB and BC (2mks)	a) Indicate th b) Explain yo	e levels of th our answer in	e liquids in Pi (a) above.	ipe A and pi	ре В .				(1n (1n	ık) ık)
Fig. 8 • <td>10. Figure 8 show</td> <td>vs dots which</td> <td>were made b</td> <td>oy a ticker tir</td> <td>ner-tape a</td> <td>ttached</td> <td>l to a tr</td> <td>olley.</td> <td></td> <td></td>	10. Figure 8 show	vs dots which	were made b	oy a ticker tir	ner-tape a	ttached	l to a tr	olley.		
ABCIf the frequency used was 50 Hz, determine a) the velocities between AB and BC(2mks)									· _	
If the frequency used was 50 Hz, determine a) the velocities between AB and BC (2mks)	Fig. 8	• •	• •	•	•	-	_			
a) the velocities between AB and BC (2mks)	Fig. 8	• • • A		B	• <u> </u>			C		
	Fig. 8	A A y used was 5	0 Hz, determ	B	•			C		

b) the deceleration of the trolley.

© Busia- 2011

Physics 232/1

(2mks)

11. Figure 9 shows a pail of water being swung in a vertical circle.

SECTION B - 55 MARKS Answer <u>all</u> questions in this section in the spaces provided.

- 12. a) A rifle of mass 4.0 kg fires a bullet of mass 12.0 g with a muzzle velocity of 700 ms⁻¹. Assuming that the rifle is free to move. Find the velocity of recoil. (3mks)
 - b) Figure 10 shows a cross-section of a handle of a screw jack 70 cm long. The pitch of the screw is 0.8 cm.

Given that the efficiency is 65%, calculate: i) the velocity ratio of the system

(2mks)

© Busia- 2011

Form Four 6

Physics 232/1

ii) the mechanical advantage of the screw jack.	(2mks)
c) Sketch a graph of efficiency against Load	(1mk)
d) Draw a single moving pulley with a velocity ratio of 2.	(2mks)

 13. a)Define latent heat of vaporization.
 (1mk)

b) Figure 11 shows a set up by a student to determine the specific latent heat of vaporization of a liquid.

Ł L

Fig. 11 Vapour acting as a jacket	Liquid under investigation	
χ	Y	
	Collected Liquid	
i) Identify the parts labelled X and Y		(2mks)
© Busia- 2011	Form Four 7	Physics 232/1

ii) State	the measurements that should be taken.	(2mks)
iii) Dese liqui	wribe how the set up can be used to determine the specific latent heat of 1.	vaporisation of the (5mks)
iv) Wh	at is the purpose of the condenser?	(1mk)
4. a) Det	ine Pressure Law	(1mk)
b) Sta	e one basic assumption of the kinetic theory of gases.	(1mk)
i) Figur Fig. 1 i) Stat nay be 2mks)	e 12 shows a set up that may be used to verify Pressure law. 2 Bourdon gauge Stirer Thermometer Hot water Hot water Class flask Dry air	the measurements that taken in the experiment

ii) Explain how the meas	urement in (i) above may be used to verify Pr	essure law (4mks)
© <i>Busia- 2011</i>	Form Four 8	Physics 232/1

.....

iii) A car tyre is at an air pressure of 4.0×10^5 Pa at a temperature of 2	7 °C. While it is running the

temperature rises to 75 °C. What is the new pressure in the tyre?	
(Assume the tyre does not expand)	(3mks)

15.	5. a) i) State Archimedes's Principle.		
	ii) An object weighs 1 .04N in air, 0.64N when fully immersed in water and 0. 72N when fully immersed in a liquid. If the density of water is 1000 kgm ⁻³ find the density of the	ully	
	liquid.	(4mks)	

b) i) State the law of floatation					
ii) Give a reason why a steel rod si	nks in water	while a ship made of steel floats on wate	r. (1mk)		
© Busia- 2011	Form Four	9	Physics 232/1		

iv) Figure 13 shows a buoy, B, of volume 40 litres and mass 10 kg. It is held in position in sea water of density 1.04gcm⁻³ by a light cable fixed to the bottom so that $\frac{3}{4}$ of the volume of the buoy is

below the surface of the sea water. Determine the tension T in the cable.

b(iii) The figure below shows a diagram of a hydrometer which is suitable for measuring the densities of liquids varying between 1.0 and 1.2g cm⁻¹

© Busia- 2011

Fig.13

Form Four 10

Physics 232/1

(4mks)

On the diagram indicate the label corresponding to $1.0 \text{ and } 1.2 \text{ g/cm}^3$ (2mks)

- 16. a) State Hooke's laws (1mk)
- b) The following results were obtained in an experiment to verify Hooke's law when a spring was extended by hanging various loads on it.

Load, L (N)	0.00	1.00	2.00	3.00	4.00	5.00	6.00
Length of spring (cm)	10.00	11.50	13.00	14.50	16.00	18.50	24.00
Extension, e (cm)	0.00						

i) Complete the table for extension, e, above

ii) Plot a graph of Load (y-axis) against extension.

(1mk) (5mks)

ii) From the graph, determine the spring constant, k

(3mks)

© Busia- 2011

Form Four 12

Physics 232/1