School

Index No	•••••
Candidate's Signature	••••

233/3 CHEMISTRY OF PAPER 3 PRACTICAL JULYS AUGUST TIME 2 HOURS

KITUI WEST DISTRICT JOINT EVALUATION TEST - 2011

Kenya Certificate of Secondary Education

233/3 CHEMISTRY PAPER 3 PRACTICAL TIME: 2 HOURS

INSTRUCTIONS:

- Answer ALL questions in the spaces provided.
- You are **NOT** allowed to start working with the apparatus for the first 15minutes of the 2– hours. Allowed for this paper. This time will enable you read through the question paper and make sure you have all the chemicals and apparatus required.
- Mathematical tables and electronic calculators may be used.
- All working **must be** clearly shown where necessary.

FOR EXAMINERS USE ONLY

Question	Maximum score	Candidate's score
1	22	
2	12	
3	6	
TOTAL SCORE	40	

This paper consists of 6 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com Connect with Joshua Arimi on facebook.

233/3 Chemistry Paper 3

- 1. You are provided with:
 - Solution P of Potassium manganate (VII).
 - 0.05M solution Q of exalic acid.
 - Solution R containing 4.9g of ammonium iron (II) Sulphate, (NH₄)₂ SO₄.FeSO₄.6H₂O, in 250cm³ of water.

You are required to:

i) Determine the rate of reaction between oxalic acid and Potassium manganate (VII).

ii) Standardize the solution P.

PROCEDURE I:

Using a measuring cylinder, place 1 cm³ of solution P into each of the five (5) test-tubes in a rack. Clean the measuring cylinder and use it to place 19 cm³ of solution Q into a boiling tube. Prepare a water bath by placing about 200 cm³ of water into a beaker and start to heat. Place a thermometer into solution Q and place it in the warm water until it attains a temperature of 40° C. Remove the boiling tube from the water – bath and place it in the test-tube rack. Add the first portion of solution P immediately and at the same time start a stop watch. Record the time taken for solution P to be decolourised in table I below. Repeat the procedure at temperatures of 50° C, 60° C, 70° C and 80° C to complete the table.

Temperature of solution Q (⁰ C)	40	50	60	70	80
Time taken for decolourisation (tsecs)					
$1/t \text{ sec}^{-1}$					

i) Plot a graph of 1/t against temperature (X-axis).

(3marks)

©2011 JET

Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com Connect with Joshua Arimi on facebook.

ers	
ii) From the graph determine the time taken for the mixture to decolourise at 65° C	233/3 Chemistry Paper 3 (3marks)
Rafers	
iii) How does the rate of reaction between oxalic acid and Potassium manga	
temperature	(1mark)
e town	

PROCEDURE II

e ve

Fill a burette with solution P. Pipette 25cm³ of solution R into a conical flask and titrate the solution P against solution R until a permanent pink colour just appears. Record your results in table II below and repeat the procedure to fill the table.

	Ι	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution P used (cm ³)			

(Show how you arrive at your answer)

ii) Calculate the concentration of solution R in moles per litre. (Fe=56, S=32, O=16, N=14, H=1).

(2marks) (2marks) (iii) Find the number of moles of solution R used (1mark) (2011 JETTips on passing KCSE subscribe freely @ http://www.joshuaarimi.com 4

- v) Determine the concentration of the Potassium manganate (VII), solution P in moles per litre. (2 marks)
- 2²^e
- 2. You are provided with solid B. Carry out the tests below and record your observations and inferences in the table below.
 - i) Place alta Spaluta full of solid B in a clean dry test-tube and heat gently then strongly.

AC CO	Observations	Inferences
Free wh	4	
x ^{t^Q}		
	(1mark)	(1mark)

ii) Place the remaining solid B in a boiling tube and add about 5cm³ of distilled water and shake well.
Divide the resulting mixture into four portions for the tests below.

Observations	Inferences
(1mark)	(1mark)

a) To the first portion add Sodium hydroxide solution dropwise until in excess.

Observations	Inferences
(1mark)	(1mark)

b) To the second portion add 2-3 drops of dilute Sulphuric (VI) acid

Observations	Inferences
(1mark)	(1mark)

233/3 Chemistry Paper 3

c) To the third portion add aqueous ammonia dropwise until in excess.

Observations 25	Inferences
o alert	
¥	
Paston.	
(1mark)	(1mark)
2 C 10 C	

difficient fourth portion add 2-3 drops of barium nitrate solution

	a Observations	Inferences
eree Int		
Notatio		
\$0. 8 ¹		
* JYP	(1mark)	(1mark)

- 3. You are provided with solid L. Carry out the tests below on L and record the observations and inferences in the spaces provide.
 - a) Place half of solid L in a boiling tube and add about 5cm³ of distilled water. Divide the resulting mixture into two portions for the tests below:

i) To the first portion add 2-3 drops of acidified Potassium manganate (VII).

Observations	Inferences
(1mark)	(1mark)

ii) To the second portion dip a piece of blue litmus paper

Observations	Inferences
(1mark)	(1mark)

b) Place the remaining solid L in a metallic spatula and ignite it.

Observations	Inferences
(1 1)	
(1mark)	(1mark)