\qquad
SCHOOL: \qquad Candidate's signature: \qquad Date: \qquad

232/1
PHYSICS
PAPER ${ }^{2}$
JULSAATGUST 2011
TdME: 2 HRS

MASINGA DISTRICT JOINT EVALUATION TEST- 2011
 Kenya Certificate of Secondary Education (K.C.S.E)

232/1
PHYSICS
PAPER 1
(THEORY)
TIME: 2 HRS

INSTRUCTIONS

1. The paper consists of two sections, Section A and B.
2. Answer ALL the questions in section A and B in the spaces provided.
3. ALL working MUST be clearly shown.
4. Mathematical tables and electronic calculators may be used.
5. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~L}_{\mathrm{V}}=2.6 \times 10^{6} \mathrm{Jkg}^{-1}, \mathrm{~L}_{\mathrm{f}}=3.3 \times 10^{5} \mathrm{~J}^{-1} \mathrm{~kg}$

FOR EXAMINER'S USE:

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
$1-11$	25	
12	12	
13	12	
14	13	
15	9	
16	9	
TOTAL	$\mathbf{8 0}$	

This paper consists of 12 printed pages
Candidates should check to ensure that all pages are printed as indicated and no questions are missing

SECTION A (25 MARKS)

1. The micrometer screw gauge in figure 1 below gives the reading of the diameter of a piece of a wire.

Fig 1
Given that the length of the wire whose diameter was read by using figure 1 above is 4 cm , determine the volume of the wire.
(2 Marks)
2. Figure 2 below shows a measuring cylinder containing some water.

(i) New reading (1 Mark)
(ii) New reading
(1 Mark)
Measuring cylinder

Fig 2
Another $10 \mathrm{~cm}^{3}$ of water was added to the cylinder from a burette delivering volume from $0 \mathrm{~cm}^{3}$ to $50 \mathrm{~cm}^{3}$. Record in the spaces provided the new reading indicated on each vessel.
(2Marks)
3. Explain the cause of random motion of smoke particles as observed in Brownian motion experiment using a smoke cell.
4. Figure 3 shows a uniformar of length 1.0 m pivoted near one end. The bar is kept in equilibrium by a spring balance ass hown:

Fig 3
Given that the reading of the spring balance is 0.6 N , determine the reaction force at the pivot.
(3Marks)
5. When a Bunsen burner is lit below wire gauze, it is noted that the flame initially burns below the gauze as shown in figure 4 below. After sometime the flame burns below as well as above the gauze.

Fig 4
Explain this observation
(2Marks)
6. Figure 5 shows a flask fitted with a tube dipped into a beaker containing water at room temperature.

The cork fixing the glass tube is tight.

Fig 5
State with reason what would be observed if cold water is poured on to the flask.
\qquad
\qquad
\qquad
7. State the reason why it is colder during the night when the sky is clear than when it is cloudy.
(1Mark)
\qquad
\qquad
8. Water jets out through small holes at the same height in a tall can as shown in figure 6 .

Fig 6
a. State one conclusion that can be made from this observation.
(1Mark)
\qquad
\qquad
b. Explain two adjustments that can be made to increase the distance X without changing the type liquid or the position of the can.
\qquad
\qquad
\qquad
9. A uniform meter rule is balanced as shown in figure 7.

By displacement method, the immersed object is found to occupy $13.5 \mathrm{~cm}^{3}$. Determine the density of the liquid in SI units.
10. A resultant force F acts on a body of mass M causing an acceleration of A_{1} on the body. When the same force acts on a body of mass 2 m , it causes an acceleration of A_{2}. Express A_{2} in terms of A_{1}.
(2Marks)
11. Figure 8 shows a pilt ball being lifted into a funnel end of a blower.

Explain this observation

SECTION B (55 MARKS)

12. An object is fired vertically upward from the ground level with a velocity of $50 \mathrm{~ms}^{-1}$ and reaches a maximum height, h . It falls back to the ground and bounces to a height of 4 m .
a) Sketch a velocity time graph to represent the motion of the object from the time it is fired till it bounces to the height of 4 m .
(2Marks)

b.) Calculate the maximum height reached h.
(2Marks)
c.) Fig 9 represents a wheel and axle used as a machine, whose efficiency is 80% to raise 400 N of building materials. The wheel and axle have diameters of 75 cm and 15 cm respectively.

Fig 9

i) Mark on the diagram the correct position and direction of the load to be lifted.
ii) Name the principle on which this machine works.
\qquad
iii) Calculate the effort needed to raise the load.
iv) The machine is operated manually and raises the load to a height of 5 m in 20 seconds. Calculate the p_{0} wer developed by the operator.

b) Steam at $100^{\circ} \mathrm{c}$ was passed for sometime into ice at $0^{\circ} \mathrm{c}$. At the end, temperature of the water obtained was $52^{\circ}{ }_{\mathrm{C}}$ and its mass 2 g . Calculate;
i) The heat lost by steam
ii) Mass of the ice used.
c) Other than using steam, describe briefly using a diagram how you would experimentally determine the latent heat of fusion of ice.
(4Marks)
\qquad
d) Give a reason why it is not advisable to melt ice directly using an electric heating coil. (1Mark)
\qquad
\qquad
14. a) State Charles law.
(1Mark)
\qquad
\qquad
b) The table below shows the volume V of a certain mass of a gas at different temperatures, T , obtained in an experiment to verify Charles law.

$\mathrm{V}\left(\mathrm{cm}^{3}\right)$	7.0	7.6	8.2	8.6	8.8
$\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)$	15	40	65	80	90

i) Draw a set up of apparatus that could be used to verify the law.
(2Marks)
ii) Plot a graph of volume

iii) From the graph determine the volume of the gas at $0^{\circ} \mathrm{c}$.
iv) Use the graph to determine the rate of expansion of the gas.
(2Marks)
v) Given that $\mathrm{V}=\mathrm{KT}+\mathrm{C}$, write down the values of Kand $\mathrm{C} .(2 \mathrm{Marks})$
15. a) State Archimede's principle.
(1Mark)
b) A student was provided with water in a beaker, a spring balance, a metal block, a cork and a string. Using the arrangements shown in figure 9 she recorded the following results

Fig 9

Weight of cork in air $={ }_{2} \mathrm{~N}_{1}$
Weight of cork in air and metal in water $=\mathrm{W}_{2}$
Weight of bothroork and metal in water $=W_{3}$
i) Write $\underset{\sim}{x}$ expression for the upthrust on the cork in water.
ii) Derive an expression for the relative density of the cork.
c) Apiece of wax of mass 380 g and volume $400 \mathrm{~cm}^{3}$ is kept under water by tying with a thin thread to a piece of metal. Determine the tension in thread.
(4Marks)
16. a) A body moving in a circular path at constant speed is said to be accelerating. Explain. (1Mark)
\qquad
b) Figure 10 below shows a bucket filled with water moving round in a vertical circular path of radius 1 m

Fig 10

(1Mark).

If the mass of water is 5 kg and the speed of the bucket is $20 \mathrm{~m} / \mathrm{s}$;
i) Explain why the water is not falling down when the bucket arrives at point C of the Circular path.
(1Mark)
\qquad
ii) What is the net force on water at point C.?
(2Marks)
iii) Show by calculation that this net force is greater at point A than at point C .
(3Marks)
iv) Calculate the value of the angular velocity
(2Marks)

