\qquad
\qquad
SCHOOL: \qquad Candidate's signature: \qquad
Date: \qquad

232 / 3
PHYSICS
PAPER 3

MASINGA DISTRICT JOINT EVALUATION TEST - 2011

Kenya Certificate of Secondary Education (K.C.S.E)

232 / 3
PHYSICS

PAPER 3

(PRACTICAL)
$21 ⁄ 2$ HOURS

INSTRUCTIONS TO CANDIDATES

* Write your name and index number in the spaces provided above.
* Answer ALLthe questions in the spaces provided in the question paper.
* You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before commencing your work.
* Marks are given for a clear record of the observations actually made, for their suitability and accuracy and the use made of them.
* Candidates are advised to record their observations as soon as they are made.
* Mathematical table and electronic calculators may be used.

FOR EXAMINER'S USE ONLY

Question	Maximum Score	Candidates Score
$\mathbf{1}$	20	
$\mathbf{2}$	20	
Total		

This paper consists of 6 printed pages.
Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing.

QUESTION 1 (20 MARKS)

a) Determine the volume V of one of the masses using the apparatus provided

Record $\mathrm{V}=$ \qquad
b) i) Determine the center of gravity G of the metre rule and record it.
\qquad (1Mark)
ii) Arrange the apparatus as shown in the diagram below such that $\mathrm{X}=50 \mathrm{~mm}$ from the pivot with 100 g mass completely immersed in liquid L hang the other 100 g mass from the metre rule and adjust its position until the system is in equilibrium as shown in the diagram.

Repeat the procedure above with the following values of X and fill the table.
NB: During each experiment, ensure that the position of the pivot does not change.
(3Marks)

$\mathrm{X}(\mathrm{mm})$	50	100	150	200	250	300
$\mathrm{Y}(\mathrm{mm})$						

iii) Plot a graph of Y_{∂} against X .

© Masinga District Joint Evaluation Test

Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com
Connect with Joshua Arimi on facebook.
v) The slope S is given by the equation $\mathrm{S}=$ - where W_{X} is the apparentWeight of the mass in liquid L and W_{Y} is the actual weight. Calculate the value of W_{X} and the upthrust U.

QUESTION 2

a) Connect the circuit ass shown in the figure below.

Record the Emf, E of the cells.
$\mathrm{E}=$ \qquad .volts
b) Disconnect the voltmeter and connect the circuit as shown in the figure below.

c) Adjust the length L of the wire to 0.1 m , close the switch k , and read the value ofcurrent and record in the table below.

Length L(m)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
Current I (A)							
$-\left(\mathrm{A}^{-1}\right)$							

4 Marks

2Marks
d) Repeat the procedure in (c) above for the value of lengths of Lgiven in the table above.
e) Calculate the values of-and record in the table.
f) On the grind provided plot a graph of-(Y- axis) against L
(5 Marks)

g) Determine the gradient afthe graph

h) i) Measure the diameter of the wire in three points used.

$$
\begin{align*}
& \mathrm{d}_{1}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{d}_{2}= \\
& \mathrm{d}_{3}= \\
& =-\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \tag{1Mark}
\end{align*}
$$

ii) Determine the cross section area, A of the wire
i) From the equation $-=-+-$

Determine
i) the value of K
(2 Marks)
ii) the value of Q
(1 Mark)

