Name:	AILSWE		Index No
School:	ariot	•••••	Candidate's Sign
Date:	28get 6		
233/1 Partial CHEMISTRY	on.		
233/1 23/12/2017/10/2			
PARERI			
JUEX AUGUST-201 TIME: 2 HOURS	1		

MUMIAS DISTRICT JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Paper 1

INSTRUCTIONS TO CANDIDATES:-

- Answer **all** the questions in the spaces provided in the question paper.
- All working **MUST** be clearly shown where necessary.
- KNEC Mathematical tables and electronic calculators may be used

For Examiner's Use Only

Question	Maximum score	Candidate's score
1-30	80	

This paper consists of 13 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing

©MUMIAS -2011 Form Four 1 Chemistry 233/1

				~ 7					
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cal \ \cal \ \cal \ \cal \ \cal \ \cal \ \cal \ \cal \ \cal \ \cal \ \cal \cal \cal \cal \cal \ \cal \	XX7	, •	C OIN	, •	1 4	aluminium	. 1	1
- 1	121	Write an	ealiation	tor the	reaction	hetween	aliiminiiim	OVIDE	วทศ
- 4	uai	will all	Cuuanon	IOI the	reaction	DCLWCCII	arummum	UAIUC	anu

(i) Dilute sulphuric (VI) acid	(1mk)
So.	·

Isotope	Relative abundance %
69 R 31	61.3
71 R 31	38.7

(a) Determine the number of neutrons of
$${}^{69}_{31}$$
 (1mk)

3. The table below shows ammeter readings recorded when two equimolar solutions were tested separately.

Electrolyte	Current (A)
Dilute Sulphuric (VI) Acid	7.2
Ethanoic Acid	4.0

©MUMIAS -2011 Form Four 2 Chemistry 233/1

(a) State the property of hydrogen chloride gas that makes this experiment possible?		
(b) What would be observed in the flask X ?	(1mk)	

5. 3.8 g of magnesium chloride was dissolved in distilled water. Lead (II) nitrate was added until in excess. Work out the number of chloride ions precipitated.

$$(Mg = 24, Cl = 35.5 \text{ Avogadro's constant} = 6.0 \text{ X } 10^{23}).$$
 (2mks)

6. A student set up the apparatus for the preparation of carbon (IV) oxide gas as shown below. Study the set up and answer the questions that follow.

©MUMIAS -2011 Form Four 3 Chemistry 233/1 Use the information in the energy cycle diagram below and answer the questions that follow:

(i) State Hess's law	(1mk)
(ii) Name the enthalpy changes represented by ΔH_1 and ΔH_3	
ΔH_1	(1mk)
ΔH_3	(1mk)

©MUMIAS -2011 Form Four 4 Chemistry 233/1

8. The table below gives some experimental results on four samples of water. Use the information to answer the questions that follow:

Sample of water (50cm ³) each	Drops of soap needed to form lather	
\$ \times	Before boiling	After boiling
A A	25	15
B	8	8
Le C	18	8
D	25	25

(a) Which sample (s) contains permanent hardness? Explain.	
(b) Which samples are likely to contain calcium hydrogen carbonate. Explain.	(1mk)

9. The diagram below represents the products of industrial fractional distillation of crude oil.

The table below gives major constituents of crude oil. Study it and the diagram above and answer the questions that follow:

0°C)

©MUMIAS -2011 Form Four 5 Chemistry 233/1

(2mks)

11. A student set up the following apparatus to investigate what happens when a hot platinum wire is dipped into a conical flask containing a concentrated solution of ammonia as shown below:

(ii) Calculate the concentration of 1-chloropropanoic acid in moles per dm³

©MUMIAS -2011 Form Four 6 Chemistry 233/1

	() Committee the committee of the commi	(1 1)
	(a) State the observation made the action of the state of	(1mk)
	(b) Explain why the platinum wire remains hot although there is no heating.	(1mk)
	Qabon.	
1	2. (a) What condition is necessary for a dynamic equilibrium to be is established. Let the condition is necessary for a dynamic equilibrium to be is established. PbCO _{3 (s)} = PbO _(s) + CO _{2 (g)} How would the position of the equilibrium be affected if a small amount of diluis added to the equilibrium mixture. Explain.	(1mk)
	TCSE 108 TC	
^*e	(b) When lead (II) carbonate is heated the equilibrium shown below is established	
\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$PbCO_{3(s)} = PbO_{(s)} + CO_{2(g)}$	
40 40	How would the position of the equilibrium be affected if a small amount of dilu	` '
761	is added to the equilibrium mixture. Explain.	(2mks)
		•••••
1	3. Potassium manganate (VII) reacts with water under alkaline conditions as per the en	quation below:
	$MnO_{4 (aq)}^{-} + 2 H_2O_{(1)} + 3e^{-}$ \longrightarrow $MnO_{2(s)}^{+} + 4 OH_{(aq)}^{-}$	
	(a) What are the oxidation states of manganese before and after the reaction?	
	Before the reaction	(1mk)
	After the reaction	(1mk)
	(b) What process has the manganese undergone in this reaction	(1mk)
1	4. Below is data on some experiments A, B and C. Study the information given carefu	
	the questions that follow:	

Experiment	Mass of calcium carbonate (g)	Volume of HCl(aq) Used (cm ³)	Concentration of HCl (moldm ⁻³)
T	2.0	60	1.0
U	2.0	40	2.0
\mathbf{V}	1.5	40	0.5

©MUMIAS -2011 Form Four 7 Chemistry 233/1

Which graph corresponds to:

Experiment T (½ mk)

Experiment U (½ mk)

Experiment V (½ mk)

15. The scheme below represents the manufacture of a cleansing agent G

$$\begin{array}{c}
R \\
O
\end{array}
\xrightarrow{Conc. H_2SO_4}
\xrightarrow{R}
\xrightarrow{NaOH_{(aq)}}
G$$

$$SO_3H$$

(i) Draw the structure of substance G (1mk)

(ii) Name the class of cleansing agent to which G belongs.	(1mk)
(iii) State one advantage of the above cleansing agent.	(1mk)
	••••
	••••

©MUMIAS -2011 Form Four 8 Chemistry 233/1

A ATEME

16. Below is part of the flow diagram of the contact process.

17. The solubility of potassium nitrate is 155g/100g of solvent at 80°C and 38g/100g of solvent at 25°C. What mass of potassium nitrate will crystallize out if 50g of its saturated solution at 80°C was cooled to 25°C. (3mks)

18. Study the information in the table below and answer the questions that follow.

Element	Atomic number	Boiling Point (°C)	Atomic radii (nm)
L	19	1047	0.231
M	13	2743	0.126
N	17	238	0.099
P	11	1163	0.158
Q	16	718	0.104

©MUMIAS -2011 Form Four 9 Chemistry 233/1

	(a) Identify the elements with similar chemical properties. Explain.	(2mks)
	ati ^c	
	0.00 et	
	(b) What type of structure is exhibited by the compound formed when elements N an	
		(1mk)
19.	Gas B takes 110 seconds to diffuse through a porous pot, how long will it take for the	same amount
. (sof ammonia gas to diffuse under the same conditions of temperature and pressure?	
\$ 500 \\ \$ 500 \\ \$ 500 \\	Relative Molecular mass of B = 34, relative molecular mass of Ammonia = 17)	(2mks)
20.	(a) What is paper chromatography?	(1mk)
		(2.1.)
	(b) Give two application of chromatography.	(2mks)
	(b) Give two application of chromatography.	(2mks)
	(b) Give two application of chromatography.	(2mks)
21.	Below are pH values of four types of medicine represented by letters P , Q , R and S .	(2mks)
21.		(2mks)
21.	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine pH values P 7.0	(2mks)
21.	Below are pH values of four types of medicine represented by letters P , Q , R and S . Medicine pH values	(2mks)
21.	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine pH values P 7.0 Q 5.0	(2mks)
21.	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine pH values P 7.0 Q 5.0 R 8.0 S 6.0 (a) It is not advisable to use S when a patient has indigestion. Explain	(1mk)
21.	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine pH values P 7.0 Q 5.0 R 8.0 S 6.0 (a) It is not advisable to use S when a patient has indigestion. Explain	(1mk)
21.	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine pH values P 7.0 Q 5.0 R 8.0 S 6.0 (a) It is not advisable to use S when a patient has indigestion. Explain	(1mk)
21.	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine	(1mk)
21.	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine	(1mk)
	Below are pH values of four types of medicine represented by letters P, Q, R and S. Medicine	(1mk)

Calculate the amount of heat energy required to change 10.5kg of solid iron to gaseous iron. (2mks)

(b) Iodine can react with chlorine as shown below;

$$I_{2(g)} + Cl_{2(g)}$$
 \longrightarrow $2Cl_{(g)}$: $\Delta H = -68 \text{ kJmol}^{-1}$

©MUMIAS -2011 Form Four 10 Chemistry 233/1 23. Study the diagram below and answer the questions that follow:

(a) Write equations for the reactions that occur when the switch S is closed for 30minutes at; (2mks)

Anode	
Cathode	
(b) Comment on the concentration of the electrolyte after 30 minutes.	(1mk)

- 24. 3g of ₂₅₇Lr whose half-life is 8 seconds remains after undergoing radioactive decay for 32 seconds. Find the original amount of the substance. (2mks)
- 25. Chlorine gas was bubbled through water for sometime. The green yellow solution formed was poured into along glass tube and placed in the sun as shown in the diagram below:

©MUMIAS -2011 Form Four 11 Chemistry 233/1

		(b) Write an equation to show how gas T is formed.	(1mk)
		and a second	
		e ^{zt}	
		(c) Write an ionic equation between chlorine and aqueous Iron (II) Chloride solution.	(1mk)
	26.	Describe how a pure sample of Lead (II) Chloride can be prepared using the following reagon	ents:
	ام.	Solid Lead (II) carbonate, dilute hydrochloric acid, Distilled water, Dilute nitric (v) acid.	(2mks)
	e vi	go.	
۶ , ص	×2.//		
in, dr.	27.	During extraction of copper metal, the ore from which copper is got undergoes processes the	at
		include.	
		(i) Crushing of ore.	
		(ii) Mixing of crushed ore with oil and water and bubbling air through it.	(1 1)
		(a) Name the process in (ii) above	(1mk)
		(b) What is the purpose of the process (a) above?	(1mk)
		(c) Bronze is an alloy of copper and another metal. Identify the other metal and give one us	
		bronze.	(1mk)
	28.	Use the diagram below to answer the questions that follow.	
		Iron nail	
		P Zinc Copper strip Q	
		In which set-up will the iron-nail rust? Explain.	(2mks)

©MUMIAS -2011 Form Four 12 Chemistry 233/1

29. (a) Complete the diagram below to show how Alpha(α) particles, beta(β) particles and Gamma (γ) rays are emitted from radioactive source can be distinguished from each other label your diagram clearly. (2mks)

(b) The following represents a nuclear equation. Balance the equation:

$${}^{210}_{84}Z \longrightarrow {}^{210}_{85}Y + \cdots$$

30. The structure below represents a polymer used in the manufacture of toys.

(i) Draw and name the structure of the monomer. (1mk)

(ii) Name the type of polymerization that occurs when forming the polymer. (1mk)

©MUMIAS -2011 Form Four 13 Chemistry 233/1