

- Write your name and index number in the spaces provided above
- Answer <u>ALL QUESTIONS</u> in the spaces provided in the question paper
- You are supposed to spend the first 15 minutes of the $2^{1}/_{4}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are awarded for clear record of the observations actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Mathematical tables and electronic calculators may be used.

	b(v)	c(i)	c(ii)	c(iii)	d(i)	d(ii)	d(iii)	
Maximum score	8	5	1	2	1	1	2	
Candidate's score								

For Examiner's Use Only

Ouestion 2

Ouestion 1

	a(ii)	a (iii)	a(iv)	a(v)	a(vi)	b(iii)	b(iv)	b(v)	
Maximum score	6	5	2	1	1	3	1	1	
Candidate's score									

Question 1

You are provided with the following apparatus

- Two complete retort stands.
- A metre rule
- Two pieces of thread (120cm and 20cm)
- A stop watch or stop clock
- A piece of masking tape
- A peddling bob (31.3g)
- A half metre rule
- A piece of masking tape

a) (i)

- Attach one end of string to the metre rule at the 10cm mark by fastening a loop of string tightly round the metre rule.
- Fix the string at this point with a piece of masking tape
- Tie the string in the second loop at 90cm mark. Fix this loop with another piece of masking tape.
- ii) Attach the pendulum bob at the centre of the string so that the centre of gravity of the bob is 15cm below the point of suspension (see figure 1 below.)

Figure 1

- b) (i) Measure the angle 2θ
- ii) Pull the pendulum bob towards you through a small distance release it and measure <u>time "t"</u> for <u>10 oscillations</u>.
- iii) Remove the masking tape; slide the loops to the 12cm and 88cm marks. Refix the masking tape. Measure the angle 2θ and time "t" as before
- iv) Report (iii) above with the loops at 15cm and 85cm, 20cm and 80cm, 25cm, and 75cm. 30 and 70cm, 35cm and 65cm marks.

v)	Enter all your results in the table below. (8m									
		10 and 90	12 and 88	15 and 85	20 and 80	25 and 75	30 and 70	35 and 65		
	2θ									
	θ									
	Cosθ									
	t(s)									
	$T = \frac{t}{10}(s)$									
	$T^2(S^2)$									

Tips on passizer/3 RG/SE subscribe freely @ http://www.jczef1ukakuri.NorthSom Evaluation Connect with Joshua Arimi on facebook.

ii) Find the intercept on the T^2 axis.

(1mrk

iii) Find the slope of your graph.	(2mrks
d) i) Measure the length L of the pendulum bob when $2\theta = 0$ in metres.	(1mrk
ii) Using your graph, determine the period T of the pendulum when $2\theta = 0$.	(1mrk
iii) Using the formular	
$T^2 = \frac{KL}{g}$ where K = 39.48	
Determine the value of g.	(2mrks

Question 2

You are provided with the following

- Two dry cells
- A nichrome wire, 1m long labelled AB
- Eight connecting wire, one of the length 70cm having a Jockey
- A Carbon resistor 5Ω
- An ammeter (0 1.0A)
- A voltmeter (0 3V)
- A switch
- Two one cell holders

Proceed as follows

ii) With the jockey at A ie L = 100 cm, record the voltmeter reading V and the ammeter reading I Repeat the reading for L= 80, 60, 40, 20 and 0 cm and enter your results in the table below.

(6mrks

L(cm)	100	80	60	40	20	0
P.d V(volts)						
Current I (A)						

iii) Plot a graph of P.d(V)(y - axis) against the ammeter reading I.

(5mrks

Tips on passi232/3 KG/SE subscribe freely @ http://www.jo2011 Wakuri North Comt Evaluation Connect with Joshua Arimi on facebook.

iv)	Determine the slope of your graph when $V = 0.5$ volts.	(2mrks
	and pre-	
	2 ^{apers}	
v)	What physical quantity does the slope in (iv) represent.	(1mrk
vi)	What happens to this physical quantity named in $(V1)$ above as the current increases	(1mrk
MOT T		
\$b)	You are provided with the following apparatus.	
	- A lit candle	
	- White screen	
	250ml flat hattamad flagly	

- 250ml flat bottomed flask
- Metre rule
- Access to water.

Procedure;

\$0⁵

i) Fill the flat bottomed flask with tap water. Fit the round flat flask in the clamp and follow the procedure.

ii) Starting with distance U = 50cm adjust the screen until you get a sharp image of the flame. Measure the distance V when the image is sharpest.

iii) Repeat the procedure for other values of U as shown in the table below.

U(cm)	50	40	30
V(cm)			
$V/_{\rm U} = M$			

(3mrks

(½ mrk

iv) Determine the average values of $\frac{V}{U}$ and V

$$\frac{V}{U} = (\frac{1}{2} \text{ mrk})$$

v) Find the mean value of f from the equation.

$$M = \frac{V}{f} - I \tag{1mrk}$$

Tips on passi232/3 KG/GE subscribe freely @ http://www.jc2611.Wakuri.NorthComt Evaluation Connect with Joshua Arimi on facebook.