Name: \qquad
\qquad

School: \qquad
\qquad
Date: \qquad 2^{e}

233/3

NDHIWA JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry
 Practical

INSTRUCTIONS TO THE CANDIDATES:-

- Write your name and index number in the spaces provided
- Sign and write the date of examination in the spaces provided
- Answer all the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- All working MUST be clearly shown where necessary.
- Use the first 15 minutes of the $21 / 4$ hours to ascertain you have all the chemical sand apparatus tha you may need.

For Examiners use Only

QUESTION	MAX. SCORE	SCORE
1	13	
2	12	
3	15	
TOTAL	$\mathbf{4 0}$	

This paper consists of 4 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. You are provided with

- 1.3 g of solid K , sodiumbcarbonate
- Hydrochloric acid sptútion L
- Phenolphthalein oficator
- methyl orange ${ }^{\text {onn }}$ dicator
- you are reqqifedfo standardize the hydrochloric acid solution L.

Procedure $0^{\circ} \stackrel{0}{ }$
Transfer all the sofíd K into a $250 \mathrm{~cm}^{3}$ volumetric flask. Using $100 \mathrm{~cm}^{3}$ measuring cylinder add $100 \mathrm{~cm}^{3}$ of distilled water 48 solid K to dissolve it. Add more distilled water to the mark. Label this solution K. Using a pipettecfille withosolưtion L in the burette up to the end point.(do not pour out the contents of the conical flask). Record the rearaing in the table I. Add three drops of methyl orange indicator to the contents of the conical flask and sonntinue titrating with solution L, up to the end point. Record the reading in table II. Repeat the procedure.

[^0](a)

	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Titre $\left(\mathrm{cm}^{3}\right)$			

Determine the average of the titre t_{1}

Table II (using methyl orange indicator)
(b)

	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Titre $\left(\mathrm{cm}^{3}\right)$			

Determine the average titre t_{2}
(c) Calculate the total volume of solution L .
$\mathrm{t}_{1}+\mathrm{t}_{2}=$
(d) Calculate the concentration of solution K in moles per litre. $(\mathrm{Na}=23, \mathrm{O}=16, \mathrm{C}=12)$
(e) Calculate the number of moles of sodium carbonate solution K in $25.0 \mathrm{~cm}^{3}$
(f) Calculate the number of moles of hydrochloric acid solution L in the volume used.

2. You are provided wi̛th:

- Solution B_{1}, potassium iodate solution
- Solution Bó, acidified sodium hydrogen sulphite solution.
- A stop watcch/stop clock
- Solutiond 33 , starch indicator

You are recquired to find out the effect of the concentration of potassium iodate B_{1} on the rate of reaction with aciodifie sodium hydrogen sulphite B2.
NB . 5 The end point for the reaction of potassium iodate with acidified sodium hydrogen sulphite is detected by the formation of a blue coloured complex using starch indicator.

Brocedure

(a) Place solution B1 in a burette and measure out the volumes of B_{1} shown in table III into five dry test tubes. Using a $10 \mathrm{~cm}^{3}$ measuring cylinder add distilled water to the test tubes as shown in
table III

Test tube	Volume of B_{1} and distilled water
1	10 of $\mathrm{B}_{1}+0 \mathrm{~cm}^{3}$ distilled water
2	$8 \mathrm{~cm}^{3}$ of $\mathrm{B}_{1}+2 \mathrm{~cm}^{3}$ distilled water
3	$7 \mathrm{~cm}^{3}$ of $\mathrm{B}_{1}+3 \mathrm{~cm}^{3}$ distilled water
4	$5 \mathrm{~cm}^{3}$ of $\mathrm{B}_{1}+5 \mathrm{~cm}^{3}$ distilled water
5	$4 \mathrm{~cm}^{3}$ of $\mathrm{B}_{1}+6 \mathrm{~cm}^{3}$ distilled water

(b) Using a clean $10 \mathrm{~cm}^{3}$ measuring cylinder place $10 \mathrm{~cm}^{3}$ of B_{2} into $100 \mathrm{~cm}^{3}$ beaker add $4 \mathrm{~cm}^{3}$ of solution B3 and shake well. To this mixture add quickly the contents of test tube 1 and start the stop watch/stop clock immediately. Shake the mixture and note the time taken (in seconds) for the blue colour to appear

Record the time in table IV
Repeat this procedure using the other solutions prepared in (a) above and complete table IV.

Volume of $\mathrm{B}_{2}\left(\mathrm{~cm}^{3}\right)$	Volume of $\mathrm{B}_{3}\left(\mathrm{~cm}^{3}\right)$	Volume of $\mathrm{B}_{1}\left(\mathrm{~cm}^{3}\right)$	Solid of distilled water	Time taken for blue colour to appear
10	4	10	0	
10	4	8	2	
10	4	7	3	
10	4	5	5	
10	4	4	6	

(c) On the grid below plot a graph of volume (vertical axis) of solution B1 used versus time (seconds) (3mks)

(d) From your graph determine 䬼e time taken for the blue colour to appear using a mixture of $6 \mathrm{~cm}^{3}$ of solution B1 and $4 \mathrm{~cm}^{3}$ of distilled water.

(e) How does the concentration of potassium Iodate B1 affects its rate of reaction with acidified sodium hydrogensulp

Observations	Inferences
1 mk	1 mk

(b) Divide the filtrate into four equal portion. To the first portion, add ammonia solution until in excess.

Observations	Inferences
$1 / 2 \mathrm{mk}$	1 mk

(c) To the second portion, add about $2 \mathrm{~cm}^{3}$ of Barium Chloride Solutions.

Observations	Inferences
1 mk	1 mk

(d) To the third portion, add 2 or 3 drops of lead II nitrate solution provided followed by about $2 \mathrm{~cm}^{3}$ of 2 M nitric acid then shake the mixture.

Observations	Inferences
1 mk	

(e) To the fourth portion, add 3 dropscof acidified potassium manganate VII.

(f)(i) $)$ franisfer all the residue into a clean boiling tube, then add about $2 \mathrm{~cm}^{3}$ of 2 M nitric acid add about $5 \mathrm{~cm}^{3}$ of distilled water when all the solid has dissolved.

Observations	Inferences
$1 / 2 \mathrm{mk}$	$1 / 2 \mathrm{mk}$

(ii)Divide the resultant product obtained in f (i) above into three equal portions. Add sodium hydroxide solution drop wise until in excess.

Observations	Inferences
1 mk	1 mk

(iii) To the second portion, add ammonia solution drop wise until in excess.

(iii) To the third portion, add a few dreps of potassium iodide solution.

[^0]: Complete table I and II.

