Name: \qquad
School: \qquad
\qquad Index no \qquad Candidate's sign \qquad
Date: \qquad

121/2

MATHEMATLCS
PAPER 2
JULY/AUGUST 2011
TIME \dot{C}_{2}^{2} 紷HOURS

NDHIWA DISTRICT JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Mathematics

Paper 2

INSTRUCTIONS TO CANDIDATES:

- Write your name ,index number, Signature and write date of examination in the spaces provided
- The paper contains two sections. Section I and Section II.
- Answer all the questions in section I and any five questions in section II.
- Answers and working must be written on the question paper in the spaces provided below each question.
- Marks may be given for correct working even if the answer is wrong.
- Non programmable silent electronic calculators and KNEC mathematical table may be used, except where stated otherwise.

FOR EXAMINERS USE ONLY
SECTION 1

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL
Marks																	

SECTION II

Question	17	18	19	20	21	22	23	24	TOTAL
Marks									

This paper consists of 12 printed pages. Candidates should check to ascertain that all papers are printed as indicated and that no questions are missing.

SECTION I

 Answer only five questions from this section.1.Solve using squares, square roots and reciprocal table giving our answer to 4 decimal places.(3mks)

$$
\text { 这 }-\frac{1}{1.025}+(0.02425)^{2}
$$

Acchord AB of length 13 cm subtends an Angle of 67 at the circumference of a circle. Find the radius of this circle to 4 significant figures.
(3mks)
3. Make x the subject of the formular:

$$
P=K Q^{x}-R
$$

4. A salesman gets a commission of 2% on sales up to sh 100,000 . He gets additional commission of 1.5% on sales above this. If he sells good worth sh. 360, 000 and allows a discount of 2%, calculate the amount of commission he received.
(3mks)
5. A solid metal cylinder with radius 7 cm and height 5 cm is melted down and recast into a spherical ball. Calculate to 1 decimal place the surface are of this ball.
6. Coffee of grade A costing Ksh. 60 ner kg is mixed with Coffee of grade C costing ksh 40 per kg in the ration 1:3. In what ratio should this mixture be mixed with coffee of grade B costing ksh. 50 per kg so as to produce a mixture worth ksh .47 per kg .

7. In the rectangle ABCD below, clearly shade the region within the rectangle defined by locus P which satisfy the followirg inequalities.

i) $\quad \mathrm{APC} 4 \mathrm{~cm}$
ii) $\quad \mathrm{PD} \leq \mathrm{PA}$
iii) Angle PAD < Angle PAB
8. Find the shortest distance between two towns A ($55 \mathrm{~N}, 80 \mathrm{E}$) and B (5580 W) Take radius of the earth to be 6370 km .
9. In the figure below DA is diameterof a circle ABCD , center O.TCS is the tangent to the circle at C .
$B A=B C$, Find the size of angle $\delta B C S$

10 pody start from rest and accelerate to a velocity of $10 \mathrm{~m} / \mathrm{s}$. it continues with this speed for 15 seconds and theen decelerates to rest. The whole journey covered is 800 m . find the total time taken for the whole
11. The relationship between A and n is thought to be of the form $A+B C$. The two variable are graphically presented below, from some experimental data. Use the graph to obtain the values of B and C. (3mks)
12. The figure below represents a trapezium with AB parallel to DC , and $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm} \mathrm{DC}=10 \mathrm{~cm}$ and $\mathrm{AD}=5 \mathrm{~cm}$.
Calculate the size of angle ADC
3mks
13. Find the area of triangle $P Q R$ such that the adrea of its image is 12 cm after a transformation given by the matrix

14. In Physics lesson, a student measured the diameter of two objects and recorded them as $a=20.6$ and $\mathrm{b}=15 \mathrm{E}^{\circ} \mathrm{cm}$.
Find thê percentage error in working out $\mathrm{a}+\mathrm{b}$ correct to 4.d.p.
15. Find the quartile deviation for the following set of data.
$16,42,41,6,20,28,19,23,15$
(3 mks)
16. A bag contains 4 red balls and X green balls.

The probability of picking a red ball is 0.2 . Find the total number of balls in the bag.

SECTION II 50 MARKS

17. The coordinates of points P^{2} and T are $(1,-2)$ and $(3,6)$ respectively. A point Q divides line $P T$ in the ratio 3: -1.
(a) Determine the coordifates of point Q .
c) Hence determine the equation of the line perpendicular to $P Q$ and passing through T, in the form $Y=m x+c$
(d) if the Perpendicular line meets y - axis at R . Calculate the distance TR to three significant figures
(e) Point N is on OQ such that $\mathrm{NQ}=3 \mathrm{ON}$. Determine the equation to the line parallel to PQ but passing through point N .
(2mks)
18. Water flows through a cylindricalyife of radius 10 m at a rate of 2.1 m per second.
a) Calculate the volume of water defivered by the same pipe in 1 minute in liters.

b) A cylindrical storage tank of height 3 m is filled with water from this pipe at the same rate of flow. Water starts flowing into the empty tank at 0630 hours and is full at 1310 hours..
calculate the radius of the storage stank in litres.
(5mks)
c) Four families consume the capacity of this tank in one month. The water costs sh. 4.50 per thousand litres, plus a fixed charge of sh. 222 if they share the bill equally, calculate the amount paid by each family.
19. The table below shows the marks scored by students in a maths test.

Marks	$10-9$	$20-29$	$30-39$	人 $40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$
No. of students	3	5	6 $20 e^{-y^{5}}$	21	12	6	4	2	1

a) From the above table, cetermine the $20^{\text {th }}$ percentile.

b) Use the above table to draw the cumulative frequency curve (O give curve).
i) Using the above graph draw in (b)

Determine the pass mark if 40% of the student passed.
ii) If the pass mark was pegged at 65%. How many students passed.

```
Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com
Connect with Joshua Arimi on facebook.
```

20. A triangle $A(-5,-2) B(-2,-5)$ and $C(-5,-5)$

Undergoes a reflection transformation through the line $\mathrm{Y}=-\mathrm{x}$.
 Cartesian plane.
b) A B and C in the image of A B and C after another transformation of +90 turn about the origin.
c) Find the cordinatate of A, B and C hence show them on the cartession plane on the same axes.
(4mks)
d) Describe fully a transformation that maps A, B, and C onto A, B, and C .
(2mks)
21. a) The sum of two numbers is 30∂

Find their maximum product
(3mks)
b) A curve is given by the $e^{e^{4}}$ quation $Y=2 x-1 / 2 x-5 x$.

Determine the stationery points, hence state their nature.
(5 mks)
c) Sketch the curye.

22. The table below shows corresponding measurements of two observed quantities which are believed to obey the law. $Y=a x+b x$

a) Copy and comgletest table above.

B) By Using a suitable scale, draw a straight line graph to represent this relationship.
c) Use your graph to find the equation connecting y and x

23. Two baskets X and Y contain identical ball except for the colours. Basket X contains 6 red ball and 3 black ball. Basket Y contains 2 red ${ }^{5}$ balls and 3 black balls.
a) If a ball is drawnåt dandom from each basket, Find the probability that both balls are of the same colour. (4mks)
b) If two balls are drawn at random from each basket, one ball at a time without replacement, find the probability that.
i) The two ball drawn from basket X or basket Y are red.
(4mks)
ii) All the four balls drawn are red.
24. The figure below shows a triangle OAB in which $\mathrm{OA}=\mathrm{a}$ and $\mathrm{OB}=\mathrm{b}$. The points P and Q are on AB and OB respectively such that AP ? $\mathrm{PB}=1: 2$ and $\mathrm{OQ}: \mathrm{QB}=2: 3$
a) Express in terms of a ard b, the vectors:
i)

AB

iii) OP
(b) Given that $\mathrm{AX}=\mathrm{m} \mathrm{AQ}$ and $\mathrm{OX}=\mathrm{nOp}$, where m and n are scalars, write an expression for:
i) OX in terms of $\underset{\sim}{a} \underset{\sim}{b}$ and n
ii) OX in terms of $\underset{\sim}{a} \underset{\sim}{b}$ and $\underset{\sim}{m}$
iii) Solve for the values of m and n

