Name:	
Name:	Index No
School:	Candidate's Sign
Date:	
202 ON.	
232/1 PHYSICS signature PAPER 12 ⁴ 20 ² JULY/AUGUST 2011 TIME: 2 HOURS	
JULYAUCUST 2011	
TIME: 2 HOURS	

NDHIWA DISTRICT JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Physics Paper 1

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above.
- <u>retype</u>

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
Section A	1-14	25	
Section B	15	10	
	16	14	
	17	09	
	18	12	
	TOTAL	80	

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

© Ndhiwa- 2011

Form Four 1

1.	Answer all the questions in this section in the space provided State any two factors that determine the choice of instrument for measuring length	(2mks)
2.	Explain one advantage of alcohol over mercury as a thermometric liquid.	(1mk)
3.	vernier calipers with a zero error of -0.02 gave the diameter of a marble as 1.67cm. (i) Define the term zero error	(1mk)
	(ii) use the above information to determine the vernier scale reading of the calipers.	(1mk)
4.	State the pascal's principle for transmission of pressure in liquids.	(1mk)
5. grou	A girl carries 20 litres of water in a jerrycan on her head and walk fro 200m on a horiz and. Explain why the girl does no work (assume air resistance is negligible).	zontal level (1mk)
= 6.	Pure water at 0oC is heated up to 10oC Sketch the graph of density against temperatur in fig.1 below. (1mk)	re axes given
	Fig 1	
7.	Two springs of negligible weights and spring constants 50N/m and 75N/m respective connected in series and suspended from a fixed point. Determine the total extension where 7.5kg is hung from the lower end. (3mks)	

..... Form Four 2 © Ndhiwa- 2011 Physics 232/1

		TISWET'S
	8.	State one limitation of the gas laws. (1mk)
		A Perf
	9.	In an experiment two metal tins A and B were placed on an insulating stand as shown in figure 2 below Tin A was painted black while tin B polished shiny; on the outside.
ROT BIT	۲۶. ۲۶ 	Hot water at 90°C was poured into both tins at the same time and the tins covered by identical cardboards. The temperature of water in both tins was recorded at equal time intervals . (i) Suggest an appropriate aim of the experiment. (1mk)
		(ii) State any two conditions that should be considered in order for the set up to give the intended results. 2mks)
	10.	A trolley is moving at a constant speed a long a straight horizontal path. A piece of plasticine is dropped on the trolley and it sticks on it. State and explain the resultant motion of the trolley given that the mass of platicine is a quarter that of the trolley. (2mks)
		A marble of mass 50g attached to a light inextensible string of length 80cm is rotated in a vertical plane. The string cannot bear a load of more than 2N. Determine the maximum velocity that the marble can move before the string snaps. (3mks)

12. A thick glass vessel is dipped in boiling milk for some time. The glass is removed from the hot milk and water at 10°C is poured into it immediately. Explain why the glass is likely to crack. (2mks)

© Ndhiwa- 2011

13. The diagram figure 3 below shows a funnel inverted over a light pith ball on a table. Air is blown into the funnel as indicated on the diagram.

SECTION B (55MARKS)

Answer	all the questions in th	is section.
(a) Use kinetic theory of metter to	differentiate between a	alide and liquide

15	•	(a)	Us	e ki	ine	tic	the	ory	y o	f n	nat	ter	to	di	iffe	ere	nti	ate	e be	etw	reei	1 S	olio	ls a	anc	l lio	qui	ds.		(2m	ks))		
					•••			•••										•••	• • • •		•••	••••			••••		•••	•••	•••	 •••		•••		 	•••
					•••		• • •	••••							•••				• • • •		•••	• • • •			••••		•••	•••	•••	 •••		•••		 	•••
							•••	•••	•••						• • •				•••	•••		•••							•••	 	•••			 	

(b) An oil drop at room temperature is placed on the surface of water in a trough. The drop spreads to form a circular patch of area 154cm². 150 such drops occupy a volume of 0.1cm³.
(i) Explain the observation that the oil spreads into a patch. (2mks)

... © Ndhiwa- 2011 Form Four **4** Physics 232/1

	-swerts	
	(ii) use the above information to estimate the size of an oil molecule. (3mks)	
	2 ⁰⁰	
	(iii) Give one reason why the value obtained in (ii) above in but an estimate. (1mk	
پ		
ROT IST THE	(a	
*0° 12°		
* 7.4.		
	(iv) If the temperature of the oil drop is raised above room temperature, and then p water surface state and explain what is likely to be observed in terms of the size	e of patch formed.
	(temperature of water is the same as that of oil)	(2mks)
16.	(a) A test tube of uniform cross-section is loaded so that it can float upright in wat	er figure 5 below.

(i) Describe how the test tube above may be catibrated to measure densisty of liquid . (5mks)

5

© Ndhiwa- 2011

Physics 232/1

(ii) On the same diagram indicate the position of the Zero mark on the mm scale if it is calibrated to measure density. (1mk)

(iii) Give a reason for the position of the zero mark indicated in (ii) above. (2mks)

.....

(b) in an experiment to determine the density of a liquid a uniform metal cylinder of cross-section area 6.2cm² was hang from a spring balance and lowered gradually into the liquid. The upthrust was determined for various submerged lengths. The results obtained are shown on the graph figure 6. below.

Fig 6

© Ndhiwa- 2011

Form Four 6

Physics 232/1

enets	
Use the graph to (i) determine the upthrust when the cylinder is fully immersed if it length kis 10.5 cm.	(2mks)
(1) determine the uptilities when the cylinder is fully initialised if it length kis 10.5 cm.	(2111KS)
$2^{2^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^$	
(ii) determine the defisition of the liquid .	(5mks)
e va	
CC 1 MM	
The figure 7 below shows a uniform meter rule of weight 1.0N suspended from	1 0
A load F is attached to the extreme right end X. The spring balance attached to the left e reads 0.25N. the spring balance attached at Z a distance s from the right end reads 1.25N (25)	
mm s	scale
Fig 7	

(3mks)
(3mks)
(2mks)
(2mks)
(2mks)

© Ndhiwa- 2011

Physics 232/1

(b) A beaker contains 0.25kg stirred until all the	g of water at 15°C. 0.02 cice melts.	5kg of ice at 0°C is added to the wate	er which is
(i) How much heat is	s needed to melt the ice?		(2mks)
(ii)Calculate the lowest temp	perature of the mixture.	What assumptions have you made?	(4mks)
(c) Define boiling point of a	a liquid.		(1mk)
	· · · · · · · · · · · · · · · · · · ·	nk)	
(ii) Use Newton's second la	w of motion to show th	nat impulse is change in momentum.	(2mks)
(i) the average retardation	of the car.	t to rest in 7 seconds. Calculate	(2mks)
(ii) the average braking forc	e.		(2mks)
c) Explain why a fisherman	may fall into the water	if he jump a shore from a floating bo	pat. (3mks)
d) Differentiate between ela	stic collisions and inelas	stic collisions .	(2mks)
© Ndhiwa- 2011	Form Four	8	Physics 232/1

© Ndhiwa- 2011