	wers	
Name:		Index No
School:	and .	Candidate's Sign
Date:	ju st	
233/1 CHEMISTRY PAPER 1 JULY /AUGUST 20 TIME: 2 HOURS	DISTRICT JOINT E	VALUATION TEST
	Kenya Certificate of Secondary Edi	ication (K.C.S.E.)

Chemistry Paper 1

INSTRUCTIONS TO THE CANDIDATES:-

- Write you name and index number in the spaces provided.
- Answer *all* the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used
- All working **MUST** be clearly shown where necessary.

For Examiner's Use Only

Question	Maximum score	Candidate's score
1-29	80	

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing

© Nyamira– 2011

Form Four 1

Chemistry 233/1

1.	(a) Define isotope?	(1mk)
	(b) Silver exists naturally as 107 and 109_{47} Ag only. Determine the relative silver if they have been abundance.	atomic mass of (2mks)
2. A W	In organic compound is believed to have the structure CH_3CH_2 CH = CHCOOH. Go which can be used to characterize the compound.	ive two reactions (3mks)
M ^O ^t n ^t ^t ² ¹ ⁵¹ 3.	AgNO ₃	
	 (a) Give one observation made when AgNO₃ solid is heated. (b) Complete the diagram above to show how the products is/are collected. 	(1mk) (2mks)
4.	The figure below shows the behaviour of emissions by a radioactive isotope x. U question follow. P Q T	Use it to answer th
	(a) Explain why isotope X emits radiations.	(1mk)
	(b) Name the radiation labeled T	(1mk)

		Ners		
	(c) Arrange the radiations	s labeled P and T in the increa	sing order of ability to be deflect	ed
	by an electric filed.	aria		(1mk)
5.	Identify the species that	acts as a base in the reverse re	action given below. Give a reason	1. (2mks)
	$HSO_4_{(aq)} + OH_{(aq)}$	$SO_4^{2-}(aq) + H_2O_{(l)}$		
	1) E DEDAELY			
6.	A given valume of ozone	(O_3) diffused from a certain a	pparatus in 96 seconds. Calculate	e the time
	1000 = 12,0=16)	of carbon(1v) oxide to diffus	e under the same conditions.	(3mks)
it.	tran.			
C X Y				1 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I he table below shows te obtained.	sts carried out in a separate sa	mple of water drawn from a well	and results
\$0, 6 ¹				
4	Test		Results	
	(i) Addition of avaga ag	in a second	White presinitate	

Test	Results
(i) Addition of excess aqueous ammonia	White precipitate
(ii) addition of afew drops of dilute sulphuric (IV)	No white precipitate formed
acid	
(iii) addition of dilute hydrochloric acid followed by	White precipitate
a few drops of barium chloride.	

Identify the cation and anion present in the water Cation

9.

	(1mk)
Anion	(1mk)

8. The table below shows the first ionization energies of elements A and B

Element	Ionization energy KJ/Mol
Α	500
В	740

	What do these values su	ggest about reactivit	y of <b>B</b> compared to	A? Explain	(2mks)
9.	How would you obtain a sample of pure iodine and barium sulphate from a mixture of				
	the two.				(3mks)
© Nyan	nira– 2011	Form Four	3	Chen	nistry 233/1

		wers	
	10.	Describe a simple laboratory experiment that can be used to distinguish between sodium and sodium carbonate.	sulphide (2mks)
		ef a	
	11.	Hydrogen and Flourine react according to the equation. $H_{2(g)} + F_{2(g)} \Rightarrow 2HF_{2(g)} \Delta H = -538kJ$	
	(a)	) On the grid provided below, sketch the energy level diagram for the reverse reaction.	(1mk)
FOTEIT	Free L	Ellergy (k) Energy (k) Ellergy (k)	
	(b)	Reactive coordinate ) Calculate the molar enthalpy of formation of HF	(1mk)
	12.	Explain why burning magnesium continues to burn in a jar full of sulphur (IV) oxide wh wooden splint would be extinguished.	ile a burning (3mks)
	13.	An element Q has a relative atomic mass of 88. when a current of 0.5 amperes were pass the fused chloride of Q for 32 minutes and 10 seconds. 0.44g of Q were deposited at the Determine the charge on the ion of Q. 1 faraday = 96500 C)	ed through cathode. (3mks)
		·····	
	14.	(a) what observations would be made if hydrogen sulphide gas was bubbled through a so Copper (II) sulphate.	lution of (1mk)
		(b) Write an equation fro the reaction that takes place in (a) above.	(1mk)

© Nyamira- 2011

Form Four 4

Chemistry 233/1

			wer	¢.	
	15 <b>(</b>	Chlorine reacts with m $CH_{4(g)} + Cl_{2(g)}$ a) What condition is n	hethane as shown below → CH ₃ Cl _☉ + HCl _{(g} hecessary for this reaction	on to take place?	(1mk)
			er de		
	 (	b) Identify the bonds (i) Bonds broken	which are broken and th	nose that rare formed.	(1mk)
		(ii) Bonds formed?			(1mk)
		et co			
	16. 1	Aluminum chloride is	s slightly soluble n organ	nic solvents whereas anh	ydrous magnesium chloride. (2mks)
	en	with .			
,	\$ [*] .\\				
noto	47. Wł	nat is the colour of the	following?		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Metal oxide	Colour when hot	Colour when cold	
175		Zinc oxide	(i)	(ii)	
7]	Lead (II) oxide	(iii)	(iv)	
		A concentrated solutio	on of sulphuric (VI) acid	contain 72.5% sulphuric	(VI) acid. If the density of
	t 	he acid is 1.8g/cm ² de	etermine the molarity of	the acid solution. (H= 1,	O=16, S=32 (3mks)
	 19. I s	n a closed system an or shown in the equation	equilibrium exists betwe n.	een nitrogen(IV) oxide ar	nd dinitrogen tetraoxide as
		$N_2O_{4(g)}$ Pale yellow		= + 27.5kJ	
	(a) State and explain the is immersed in ice	he observation made wh -cold water.	en a glass syringe contai	ning the equilibrium mixture (2mks)
		b) If the piston of the	e syringe is pushed state	the effect on the positior	of the equilibrium. (1mk)
	© Nyamira	ı <i>– 2011</i>	Form Four	5	Chemistry 233/1

20. Hydrogen peroxide decomposes according to the equation shown below.

 \rightarrow H₂O (l) + ¹/₂O_{2(g)} $\Delta H = -98 kJ/mol$ H₂O_{2(g)} -

8.5g of hydrogen peroxide contained in 100cm³ of solution with water were completely decomposed. Calculate the rise in temperatore due to the reaction.(specific heat capacity on water = $4.25g^{-1}k^{-1}$)

Revision Paster acabi 21. Below is a table of first five alkanes and their boiling points.

4	Name	Boiling point °C
	Methane	-161.5
	Ethane	-88.5
	Propane	- 42.1
	Butane	-0.56
	Pentane	36.1

FOT SIT TT TO (a) What is the state of pentane at room temperature (25° C)? Give a reasons.

(2mks)

_____ 22. The diagram below shows two types of detergents which one of these detergents is a soap? Give a reason for your choice. (2mks) \cap

.....

 $-SO_3$

Detergent B

Iron has two oxidation states, so it can form ions Fe^{2+} . How can you test a solution to find out which 23. ion is present. Outline the tests and give the results for both ions. (3mks).....

- 24. 5 g Sodium hydrogen carbonate were dissolved in 10cm³ of water in a boiling tube. Lemon juice was then added dropwise with shaking until there was no further observable change. (a) Explain the observation which was made in the boiling tube when the reaction was in progress.

(2mks)

© Nyamira-2011 Form Four Chemistry 233/1 6

	TENETS	
	(b) What observation would have been made if the lemon juice had been added to copper in a boiling tube. Explain	turnings (2mks)
	202 ec. 01	
25.	5.0g of calcium carbonate were allowed to react with 25cm ³ of 1.0m hydrochloric ac was no further reaction. Calculate the mass of calcium carbonate that remained unrea	id until there cted.
	(Ca = 40.0, O = 16.0, C = 12.0)	(3mks)
ć	t in the second se	
26 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Construct a cell diagram fro a cell in which the following overall reaction takes place.	(3mks)
	$Zn_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$	
<i>Q</i>		
27.	Copper (II) oxide Gas R → Nitrogen and water ↑ ↑ Heat	
	The copper(II) oxide was converted to copper metal. Name the two diatomic genes that f	orm R . (2mks)

(i) Draw the ion exchanger and show how it will appear at the end of softening process. (2mks)

© Nyamira- 2011

Form Four 7

Chemistry 233/1

(ii) How is the ion exchanger recharged after exhaustion. ard .

OF OF

(1mk)

.....

The table below gives some properties of three metals: Aluminium, iron and copper. Use it to answer the questions that follow. 29.

Metal Opersity	Tensile Strength 10 ¹⁰ pa	Electrical conductivity
Aluminium 🔨 🖓 🖓 🕺	7.0	0.38
Iron	21.1	0.10
Copper1 2 8.92	13.0	0.59

ming that steel and stainless steel have similar properties to iron.	(1mk)
¢.:	
Aluminum with a steel core is used for overhead power cables in prefe a luminium preferred ?	erence to copper. Why is (1mk)
part from over head power cables copper is chosen for almost all oth ggest two reasons fort he choice of copper.	er electrical uses. (2mks)
	ming that steel and stainless steel have similar properties to iron. No do some stainless steel sauce pans have a copper base? luminum with a steel core is used for overhead power cables in prefer a luminium preferred ? part from over head power cables copper is chosen for almost all oth gest two reasons fort he choice of copper.

© Nyamira- 2011

Chemistry 233/1