		wers		
Name:			Index No	•
School:		ar ^d	Candidate's Sign	•
Date:		<u>¢</u>		
233/2 CHEMIST PAPER 2 JULY/AUG TIME: 2 H	RY GUST 2014 Past Papers. GUST 2014 Past Papers. OURSCO Steel MIRA DISTR	ICT JOIN	IT EVALUATION TES	T
NOT NOT	Vanna Cautifia	ate of Secondam	m Education (KCSE)	
\$ OF BY	Kenya Certific	aie oj Seconaary	y Laucalion (K.C.S.E.)	

Chemistry Paper 2

INSTRUCTIONS TO THE CANDIDATES:

- Write your **name** and **index number** in the spaces provided above
- Sign and write the date of examination in the spaces provided.
- Answer *all* the questions in the spaces provided.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators can be used.

For Examiners Use Only

Question	Maximum score	Candidate's score
1	11	
2	13	
3	09	
4	14	
5	10	
6	13	
7	10	
Total	80	

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

© Nyamira-2011

Form Four 1

Chemistry 233/2

1. The diagram below shows method used to extract aluminium by the electrolysis of molten bauxite.

Ste.	(i) Give equation for the reaction occurring at the two electrode. Carbon lining cathode (i) Give equation for the reaction occurring at the two electrode. Cathode (ii) In this process the anode rod have to be replaced from time to time. Explain.	(1mk) (1mk) (1mk)
or or the	(iii) The working temperature in this cell is below the normal melting point of the pur Explain the significance of this situation and how it is achieved.	rified ore. (2mks)
	(iv) State four industrial uses of Aluminium	(2mks)
	(v) A current of 100 ampere flows a through the electrolyte of this cell for 15hrs cal- volume of the gaseous product produce in this cell at 15°C and 800mmHg (<i>mola</i>)	culate the <i>r gas volume</i>

of s.t.p $22.4dm^{3}$)

© Nyamira- 2011

2 (a) The diagram below represents a mercury cell that can be used in the industrial manufacture of sodium hydroxide. Study it and answer questions that follow.

	(I)Name	
	(i) The raw material introduced at 3	(1mk)
	(ii) Another substance that carbe used in the cell instead of graphite	(1mk)
	II. Give (i) Two uses of sodium by droxide	
	(ii) Two reasons why mercury is recycled.	(2mks)
A CONTRACTOR	UI. Write an equation for the reaction in which sodium hydroxide was produced.	(1mk)
€ ^{of} si ^t	(b) If the mass of hydrogen gas produced was 50litres start. Calculate the mss of solution that was formed. $H= 1.0$, $NO = 23.0 O = 16.0$	n hydroxide (2mks)
3.	A student was supplied with a colourless liquid supposed to be water. a) (i) Describe one chemical test that could have been used to that the liquid was water.	(2mks)
	(ii) How could it have been shown that it was pure water?	
b.) 1	The flow chart below shows the various stages of water treatment.	
	Water reservation -> Filtration unit I -> Process Y	
	Filtration	
	unit II	
	Tap water Addition of Sodium hypochlorite	
		<u> </u>

© Nyamira– 2011 Form Four 3 Chemistry 233/2

		rever	\$				
	(ii) What	he name of Process Y ?					(1mk)
	(iii) Wha I) Proce	the purpose of ? co					(1mk)
	II) Addi	n of solution hypochlorite?					(1mk)
	c) to wat	\mathcal{O}^{S}	was in t	he tap wa	ater.		(1mk)
0	e www.	pe of hardness was k present in the					(TIIIK)
NOT NT P	(ii) Exp	how the hardness can be removed.					(2mks)
	follow.	e letters do not represent the actual	symbol	s of the c	Elements.		
	(i) What	ume is given to the group of elemen	ts to wh	ich C and	d F being	?	(1mk)
	(ii) Whi	letter represents the element that is	the leas	st reactiv	e?		(1mk)
	(iii) Wh	type of bond is formed when B and	E react?	' Explain			(2mks)
	(iv) Wri	formula of the compound formed w	here ele	ments D	and oxyg	gen gas react.	(1mk)
		• 1 • 1 • 1 1 • 1 25 1 • • •			1 · 1 ·		. 1 . 0 . 1

(v) On the grid indicate the a tick ($\sqrt{}$) the position of element G which is in the third period of the periodic table and forms G³⁻ ions. (1mk)

© Nyamira– 2011

Form Four 4

Chemistry 233/2

(b) Study the information in the table below and answer the questions that follow. (The letter do not represents that actual symbols of the substance.

	0			1
Substance	Melting point $^{\circ}\mathcal{O}$	Boiling point °C	Solubility in	Density at room.
	OCY OTH		water	Temp/g/cm ³
Н	-117 20.	78.5	Very soluble	0.8
J	-78 × 25	-33	Very soluble	$0.77 \mathrm{x} \ 1^{-3}$
Κ	-230 25	77	Insoluble	1.6
L	219	-183	Slightly	1.33 x 10 ⁻³
3	P* 2 ²		Soluable	
· ~?	ê.			

(i) Which substance would dissolve in water and could be separated from the solution by fractional distillation. (1mk)

..... •

(ii) Which substances is a liquid at room temperature and when mixed with water two layers would be formed? (1mk)

·····

II which letter represents a substances that is a gas at room temperature and which can be collected by.

In what homologous series do the following compounds belong? (i) CH ₃ CCH	(1mk)
(ii) CH ₃ CH ₂ OOCCH ₃	(1mk)
b) Raw rubber is heated with sulphur in the manufacture of natural rubber.(i) What name is given to the process?	(1mk)
(ii) Why is the process necessary	

d) State two industrial use of methane.	(2mks)
e)State and explain the observations when sodium metal is put unto a bo propan–l-ol	oiling tube containing (3mks)

© Nyamira– 2011

Form Four 6

Chemistry 233/2

The solubility of salt x at various temperature is as storm in the data given below. 6.

	and
Temperature ^o C	Solubility in g/100gH ₂ O _(l)
0	e <u>o</u> tt 10
2 2	»· 15
40 40	26
60	40
80,50,00	63
100.9et	100
Cip Using a suitable scale de	raw a solubility curve of salt x o

(i) Using a suitable scale draw a solubility curve of salt x on the grid provided below (4mks)

A solution containing 20g of salt X in 100g of water was cooled from 50°C (i)

(i) At what temperature will crystals of salt **x** first form?

(1mk)

© Nyamira-2011

Form Four 7 Chemistry 233/2

(ii) Determine the mass of X that constallizes if the solution is cooled to 12° C

(iii)Describe how 3Qg dry salt x can be obtained from a saturated solution of x at 65°C

We the information below on solubility to answer questions that follow.

~	N		
^ ^	Salt	Solubility	g/100g of water 20°C
1	KClO ₃	55	12
	Na ₂ CO ₃	80	31

A mixture containing 30g Potassium chloride and 30g of sodium carbonate in 100g of water at 80°C was cooled to 20°C. Some crystals were formed.

.....

.....

(i) Which of the two salts crystallized out?	(1mk)
(ii) Name the method that can be used to obtain the crystals.	(1mk)
(iii) State the salt that would be unsaturated at 20°C	(1mk)

7. (a) Use the diagram below and answer the questions that follow.

a) The above experiment was performed using carbon electrode and another electrode
(i) Identify electrode B
(1mk)
(ii) Name the colourless gas observed in test tube Y
(1mk)
(implication of the second secon

					(0 , 1)
		(111) Explain why no gas was	observed in list tube X		(2mks)
			¢		
		2 ^{0²}	¢ ^{O*}		
	A N	the second second			0.11
((b).	Use the data in the table below	w where appropriate to ans	wer the questions which	follow.
		Standard electrode potentia	l Ee ³⁺	Εθ volts	
			\rightarrow $2CT$	+ 0.71	
		$2^{(2)}_{\text{Br}} = 12\text{H}^{+} + 10\text{H}^{-}$	$\implies Br_2 + 6H_2O_{(0)}$	+0.71 +0.71	
	,e	$(3_{10}^{\circ} + 2H^{+}_{\circ}) + 2e^{-}$	$\rightarrow \qquad O_{2(\alpha)} + HIO_{(1)}$	+ 0.71	
Ę	5°/	$F_2O_{(g)} + 2H + 4e$	$\rightarrow 2 \operatorname{Fo}_4 - + \operatorname{H_2r}$	+0.71	
NOT XX	ĴŶ;	2 (6)			
E C	Each	of the above can be reversed un	nder suitable conditions		
сэ <i>г</i> У ((a) (i) identify the strongest reducing	g agent		(1mk)
			•••••••••••••••••••••••••••••••••••••••		
	(ii)	Oxidizing agent			
((ii) (b) I	Oxidizing agent dentify all the species in the tab	oles which can be oxidized	to acidic solution by Br	3 ⁰⁻ (aq) (1mk)
((ii) (b) I	Oxidizing agent dentify all the species in the tab	ples which can be oxidized	to acidic solution by Br	3 ⁰⁻ _(aq) (1mk)
((ii) (b) I (c) th	Oxidizing agent dentify all the species in the tab	bles which can be oxidized	to acidic solution by Br	3 ⁰⁻ _(aq) (1mk)
((ii) (b) Ia (c) th	Oxidizing agent dentify all the species in the table we set we below in wells represe $Pt \parallel Fe^{2+}_{(aq)} \parallel Fe^{3+}_{(aq)} \parallel Br O_{3-4}^{-1}$	oles which can be oxidized entation study it and use it t Br2 _(aq) Pt	to acidic solution by Br	3 ⁰⁻ _(aq) (1mk)
((ii) (b) I (c) th (i)	Oxidizing agent dentify all the species in the table set we below in wells represe $Pt \parallel Fe^{2+}_{(aq)} \mid Fe^{3+}_{(aq)} \parallel Br O_3^{-}_4$ Deduce the e.mf of this Cell	oles which can be oxidized entation study it and use it t Br2 _(aq) Pt	to acidic solution by Br	3 ⁰⁻ (aq) (1mk)
((ii) (b) I (c) th (i)	Oxidizing agent dentify all the species in the table as set we below in wells represe $Pt \parallel Fe^{2+}_{(aq)} \parallel Fe^{3+}_{(aq)} \parallel Br O_{3}^{-}_{4}$ Deduce the e.mf of this Cell	oles which can be oxidized entation study it and use it t Br2 _(aq) Pt	to acidic solution by Br	3 ⁰⁻ _(aq) (1mk)
((ii) (b) I (c) th (i) (ii)	Oxidizing agent dentify all the species in the table as set we below in wells represe $Pt Fe^{2+}_{(aq)} Fe^{3+}_{(aq)} Br O_{3-4}^{-4}$ Deduce the e.mf of this Cell Write a half – equation for the from this cell	ples which can be oxidized entation study it and use it t $ Br2_{(aq)} Pt$ he reaction occurring at the	to acidic solution by Br to answer questions whi negative electrode when	3 ⁰⁻ _(aq) (1mk) ch follow (2mks n current is taken (1mk)
(((((ii) (b) I (c) th (i) (ii)	Oxidizing agent dentify all the species in the table as set we below in wells represe $Pt \parallel Fe^{2+}_{(aq)} \mid Fe^{3+}_{(aq)} \parallel Br O_{3}^{-}4$ Deduce the e.mf of this Cell Write a half – equation for the from this cell State and explain the effect on	ples which can be oxidized entation study it and use it t $ Br2_{(aq)} Pt$ he reaction occurring at the the e.m.f of cell if the conc	to acidic solution by Br to answer questions whi negative electrode when centration of Fe ³⁺ ions	a ⁰⁻ (aq) (1mk) ch follow (2mks) n current is taken (1mk) is increased. (2mi