Name: \qquad
\qquad
School: \qquad
\qquad
Date:
\qquad
\qquad \approx
\qquad $e^{2} e^{8}$

NYAMIRA DISTRICT JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry

Practical

INSTRUCTIONS TO THE CANDIDATES:-

- Write your name and index number in the spaces provided
- Sign and write the date of examination in the spaces provided
- Answer all the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- All working MUST be clearly shown where necessary.
- Use the first 15 minutes of the $21 / 4$ hours to ascertain you have all the chemical sand apparatus fha you may need.

For Examiners use Only

QUESTION	MAX. SCORE	SCORE
1	23	
2	10	
3	07	
TOTAL	$\mathbf{4 0}$	

This paper consists of 4 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.
(C) Nyamira - 11

Form Four 1

1. You re provided with:

- sulphuric (vi) a cid, solution E ∂
- 0.5 soduim hydroxide $=$, solutión F
- 8 cm of magnesium Ribbogn,

You are required determinedtec concentration of sulphuric (VI) acid moles per litre.
Procedure I
Measure 50 cm 3 of solatione using a 50 ml measuring cylinder and place all of it in 100 ml beaker and keep it for use later.
Take the 8 cm of m agnesium ribbon given and fold it into half and break. Keep folding the remaining magnesium ribbone safely so asto usie in the following experiments.
Ready with erstopwatch, pick one piece of the above magnesium ribbon of 1 cm length (you have preared and drop it into the beaker containing the 50 cm 3 of solution E. immediately start your stopwatch until all the ribbon reacts completely and stop. Record time taken in seconds. Without
adjusting the stopwatch to zero drop the second 1 cm of magnesium ribbon piece to the same mixture and record the time taken for the second ribbon to react completely .
Repeat the experiment ribbon until the $8^{\text {th }}$ piece of magnesium ribbon is used.
Keep the solution mixture for use in procedure II.
Complete the table I by computing $1 /$ time ${ }^{\mathrm{sec}-1}$

1	Length of magnesium Ribbon	1	2	3	4	5	6	7	8
2	Total time taken in second								
3	Rate of reaction ${ }^{1 /} t$ sec-1								

(a) Plot a graph of ${ }^{1 / / t i m e}{ }^{\text {sec }-1}$ (y -axis) against length of magnesium ribbon (cm) used. (3mks)

(b) From your graph, determine the time 板名 would be taken if 3.5 cm of magnesium ribbon was used.

\%		
	II	III
Final burette reading (cm3)		
Initial burette reading ${ }^{5}$ (cm3)		
Volume of solution fused (cm3)		

(c) How dace the rate of reaction vary with increase of length of magnesium ribbon.? Explain. (2 mks)

- Procedure II

Place all the solution obtained in procedure I into a clean 250 ml volumetric flask. Add distilled water to make 250 cm 3 (i.e to the mark) of solution. Label the resulting solution as solution J .
Fill a burette with solution \mathbf{F}, pipette $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{J} add 3 drops of phenolphthalein indicator and titrate with solution F. Record your results in table II repeat the titration two more times.

Table II

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution fused $\left(\mathrm{cm}^{3}\right)$			

d) Determine the average volume of solution F used.
e) Calculate the number of moles of sodium hydroxide, solution F that were used.
f) Determine
(i) The number of moles of sulphuric (VI) in $25 \mathrm{~cm}^{3}$ of J
(1mk)
(ii) The number of moles of sulphuric (VI) acid in $250 \mathrm{~cm}^{3}$ of solution J .
(iii) Using that the total number of moles of sulphuric (VI) acid that were used during the reaction with magnesium ribbon to be 8.074 moles and $f($ ii) above. Calculate the total number of moles of sulphuric (VI) acid in $50 \mathfrak{\infty} \mathrm{~m} 3$ of solution E
(1mk)

(iv) Calculatertheroncentration of the original sulphuric(VI) acid, solution E in moles per litre. (1mk)

You are provided with solid L. Carry out the tests below write your observations and inferences in the spaces provided.
a) Place all solid \mathbf{L} in a boiling tube, add $15 \mathrm{~cm}^{3}$ of distilled water while shaking well. Keep it for the following experiments below.

| Observations | inference | |
| :--- | :--- | :--- | :--- |
| | | |
| $(1 \mathrm{mk})$ | | $(1 \mathrm{mk})$ |

b(i) Measure $2 \mathrm{~cm}^{3}$ of the solution and add 3 drops of soap solution shake and leave it to stand.

| Observations | inference | |
| :--- | :--- | :--- | :--- |
| | | |
| $(1 \mathrm{mk})$ | | $(1 \mathrm{mk})$ |

(ii) Measure $2 \mathrm{~cm}^{3}$ of the solution and boil if for one minute and cool it. Then add 3 drops of soap shake and leave it to stand

Observations	inference	
$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

(iii) Measure $2 \mathrm{~cm}^{3}$ of distilled water into a test tube and add 3drops of soap. Shake and it to stand.

Observations	inference		
			$(1 \mathrm{mk})$

c) (i) Measure $2 \mathrm{~cm}^{3}$ of solution L and

(ii) to $2 \mathrm{~cm}^{3}$ of solutie $\mathrm{A}^{\circ} \mathrm{L}$ add 3 drops of dilute sulphuric (VI) acid solution E

(iidis Measure $2 \mathrm{~cm}^{3}$ of solution L and add 2 drops of Lead (II) nitrate and boil.
3. You are provided with liquid M. Carry out the tests below and record your observations and inferences in the spaces provided.
(a) Place four drops of liquid M on a watch glass. Ignite the liquid using a Bunsen Burner.

Observations	inference	
	$(1 / 2 \mathrm{mk})$	

(b) To about 1 cm 3 of liquid M in a test tube add about 1 cm 3 of distilled water and shake well.

Observations	inference		
	$(1 / 2 \mathrm{mk})$		$(1 / 2 \mathrm{mk})$

(c)To about 1 cm 3 of liquid M in a test tube, add a small amount of solid sodium hydrogen carbonate.

Observations	inference	
	$(1 / 2 \mathrm{mk})$	

(d) to about 1 cm 3 of liquid M in a test tube add 3 drops of acidified potassium manganate (VII) and shake.

| Observations | inference | |
| :--- | :--- | :--- | :--- |
| | | |
| $(1 / 2 \mathrm{mk})$ | | $(1 / 2 \mathrm{mk})$ |

(e) To about $1 \mathrm{~cm}^{3}$ of liquid M in atest twhe add 3 drops of Bromine water and shake

 allow it to stand for one minute.

(g) To anatat $1 \mathrm{~cm}^{3}$ of liquid M , add the litmus papers.
e orsservations
inference

