	eners		
Name:	BILL	•••••	Index No
School:			Candidate's Sign
Date:	2 ³⁹		
e ^j	Pagon.		
233/1	à ⁺		
PAPER 1	NT 2011		
TIME: 2 HOU	RS		
Not nt to			
RACHUO	NYO SOUTH DIS	FRICT JOIN	NT EVALUATION TEST

RACHUONYO SOUTH DISTRICT JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Paper 1

©RACH - 2011

INSTRUCTIONS TO THE CANDIDATES:-

- Write you name and index number in the spaces provided. •
- Answer *all* the questions in the spaces provided. •
- Mathematical tables and electronic calculators may be used •
- All working **MUST** be clearly shown where necessary. •

Question	Maximum score	Candidate's score
1-30	80	

This paper consists of 12 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing

Form Four	Chemistry 233/1
-----------	-----------------

		wet	¢	
	1.	A mixture contains sodium chloride, am pure samples of each salt.	nmonium chloride, and silver chloride. Explain how you	can obtain (3mks)
		202		
	2.	Elements Q,S,T,U,R and P belong to the sthe elements are given below: Q^{2+} , U,	he same period in the periodic table. The ions formed by $T^{2\text{-}},R^{3\text{+}},P^{\text{+}}$ and $S^{3\text{-}}$.	the atoms of
	ee w	$x^{a}(a)$ Arrange the elements in order of inc	creasing atomic size.	(2mks)
L.C.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
No r	Š.			• • • • • • • • • • • • • • • • • • • •
\$0, 6Y		(b) Suggest a reason why elements P an	d Q cannot react with each other to form a compound.	(1mk)
	3.	Study the reaction scheme below and	d answer the questions that follow.	
		Substance Y Heat	Substance V + Reddish brown + Oxyger gas X	n gas
		Excess NaOH _(a0)	Excess ammonia	
			Solution	
		Colourless solution	White precipitate	
		W		
		$\square \square \square \uparrow \square$		
		/ HClas	White precipitate Q	
		(a) Suggest the possible anions in Y	and V	(2mks)
		Y		
		V		
		(b) Predict the name of gas X.		(1mk)
	4.	(a) Draw the structure of the following	ng compounds:	
		(i) 2 – Methyprop-i-ene		$(\frac{1}{2} \text{ mk})$
		(11) $\text{Hexan} - 2 - \text{ol}$		(½ mk)

©RACH – 2011

Form Four 2

Chemistry 233/1

				- 0	ENETS				
		(b) A compound follows:	l W react	with c	hlorine Cl	to form a	another c	compound Y whose structural	formula is as
		And A	on.	CH3CH	 	HCH ₃			
		(i) Give the nan	ne and stru	uctural	formul	a of Com	pound V	N	(1mk)
م ص	Eree I www	(ii) What type o	f reaction	leads	tot the	formatior	of comj	pound Y from compound W .	(1mk)
HOT H	5.	The table below	shows th	e PH v	values o	of some so	olutions.		
		Solution	l	K	L	М	N		
		pH	6	13	2	10	7		
		(a) Which so (i) Potass	lution is l ium hydro	likely t oxide	to be:				(½ mk)
		(ii) Lem	on juice						(½ mk)
		(b) Explain v	vhy a solu	ition of	f hydrog	gen chlor	ide gas i	n methyl benzene was identifi	ed as N . (1mk)
		(c) Compare	the electr	ical co	nductiv	vity of sol	utions J	and L	(1mk)
	6.	When a solid sa On further heati	mple of s ng , the li	ulphur quid d	is heat arkens	ed in a tea and does	st tube, i not flow	t changes into a liquid which f easily. Explain these observa	lows easily. tions. (3mks)
	7.	50cm ³ of oxyge sulphur (IV) ox	n gas diff ide to diff	use thr use thr	rough a rough th	porous p ne same p	lug in 80 lug? (S=) seconds. How long will it tak = 32 O=16)	te 100cm ³ of (3mks)
			•••••						
			••••	•••••					
	©RACH	- 2011			Form F	"our 3		C	hemistry 233/1

8. When 5g of ammonium niprate were dissolved in 250 cm^3 of water a drop in temperature of 1.5°C was observed. Determine the molar enthalpy of solution of this salt. (N=14,H=1,O=16 specific heat capacity of solution 2.2 J g⁻¹K⁻¹ density f water 1 g/cm³) (3mks)

(a) 4° sing dots (•) and cross (x) show the bonding in hydroxonium ion H₃O⁺. (2mks)

- (b) Flourine has very low melting and boiling points and yet its atoms are joined by covalent bonding. Explain. (1mk)
- 10. 6.5 g of zinc granules were reacted with 25cm³ of 4M hydrochloric acid. The graph below shows the results:

(a) Explain the shape of the curve.	(1mk)
(b) How long did it take for the reaction to be complete?	(1mk)
(c) Calculate the average rate of reaction.	(1mk)

©RACH – 2011

9.

EOF CIX

Eners	
(a) Identify the particles entitled at step I and Step II	(1mk)
Step I	
Step II	
(b) Write the nuclear equation for the reaction which takes place in step (II)	(1mk)
Constate one application of radioactivity.	(1mk)
$15.$ 3^{12} Scm ³ of 0.1m sulphuric (VI) acid required 20cm ³ of sodium carbonate solution for co	mplete
rec^{e} nuetralisation. Calculate the concentration of sodium carbonate in moles per litre.	(3mks)
16 The following set up was used to react steam with Iron Powder	

16. The following set up was used to react steam with Iron Powder.

	(a) The water was heated befor	Water The heating the in	Ton powder. Explain wi	on power Ga	s L r. (1mk)
	(b) Write an equation for the re(c) State how gas L would be c	eaction that too	k place between steam ut using water.	and iron powder.	(1mk) (1mk)
17.	Starting with Lead (II) Oxide, or chloride.	describe how y	ou would prepare a sol	id sample of Lead (II) (3mks)
18.	Painting, oiling, galvanizing or (a) Explain how these methods	tin-plating are are similar in	e methods of preventing the way they prevent ru	; rusting. 1sting.	(1mk)
©RACH	- 2011	Form Four	6	Chem	istry 233/1

	TISMETS	
	(b) Explain why galvanized iron objects are better protected even when scratched.	(1mk)
	e e	
19	Nelly's lungs can hold 2500cm ³ of air at 37°C and 1 atmosphere. What would be the this air was put in a bottle of capacity 500cm ³ at 27°C?	pressure if (3mks)
20	Sulphure acid is manufactured in large scale by the contact process. The basic react process is catalytic oxidation of sulphur(IV) oxide.	tion in the cont (1mk)
Texte.	(b) Write an equation for the basic reaction.	(1mk)
NO TO	(c) State one large scale use of sulphuric (VI) acid	(1mk)
21	. Study the structure below and answer the questions that follow.	
	$- \begin{pmatrix} CH2 - CH - CH2 - CH - CH2 - CH \\ Cl & Cl & Cl \end{pmatrix}$ (a) Name the polymer represented by the structure.	
	(b) Draw the structure of the monomer and name it.	
	Structure Name	
22	. Given that:	
	$Q^{2+}_{(aq)} + 2e^{-} \longrightarrow Q_{(s)} \qquad E^{\theta} = -0.13V$	
	$Ag^{+}_{(aq)} + e^{-} \longrightarrow Ag_{(s)} \qquad E^{\theta} = +0.80V$	
	(a) State and explain whether silver nitrate can be stored in a container made of Q	(2mks)
23	When anhydrous calcium chloride is exposed to the atmosphere it forms a solution.	
	$CaCl_2 \xrightarrow{H_2O_{(l)}} CaCl_{2 (aq)}$	
	(a) Name the process that takes place.	(1mk)
	(b) State one use of the process displayed by anhydrous calcium chloride.	(1mk)
©k	ACH – 2011 Form Four 7	Chemistry 233/1

- 24. When solid magnesium carbonate was added to a solution of hydrogen chloride in methylbenzene, there was no apparent reaction. On addition of water to that resulting mixture, there was vigorous effervescences Explain these observation. (2mks)
- 25. The graphs below represents the temperature-time curves for solids M and N

- (a) What is the name given to the curves above? (1mk)
 (b) Which of the two solids is an impure substance? Explain. (2mks)
- 26. The set-up below was used to collect gas F produced by the reaction between water and calcium metal.

	(a) Name gas F			(1mk)
	(b) Give one laboratory use of	f the solution fo	rmed in the beaker.	(1mk)
	(c) After some time there was the beaker. Explain this of	formation of a oservation.	white precipitate formed at	the top of the solution in (1mk)
27.	(a) Name and give the chemi- Name	cal formula of t	he chief ore of copper.	(1mk)
	Formula			
©RAC	'H – 2011	Form Four	8	Chemistry 233/1

	ALISWELS	
	(b) The main ore of coppered low grade. Describe how the main ore can be concentrated	l. (2mks)
28.	40cm ³ of carbon(II) oxide and 40 cm ³ of oxygen were sparked in a closed vessel. (i) Write a chemical equation for the reaction that occurs.	(1mk)
	(i) Determine the composition of the residual gases.	(2mks)
10	5 th 3 ^{ce} ft ¹	

The diagram below represents a set-up that can be used to obtain nitrogen gas in the laboratory.

	Use the information on the diagram to answer the questions that follow. (a) Name liquid X	(1mk)
	(b) What observations are made in the tube after heating for about 10 minutes?	(1mk)
	(c) Write an equation for the reaction that took place in tube W.	(1mk)
30.	Determine the relative atomic mass of the argon whose isotopic mixture is:	(2mks)
	$\frac{36}{18}$ Ar (0.34%) $\frac{38}{18}$ Ar (0.06%) $\frac{40}{18}$ Ar (99.6%)	

©RACH – 2011

29 Free

ROF BIT