Name: Atlan	Index No
Name:	Index No.
School:	Candidate's Sign
Qe ^x	_
Date:	••
233/2 CHEMISTRY PAPER 2 JULY AUGUST 2011 TIME: 2 HOURS	

RACHUONYO SOUTH DISTRICT JOINT EVALUATION TEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry Paper 2

INSTRUCTIONS TO THE CANDIDATES:

- Answer *all* the questions in the spaces provided.
- All working **must** be clearly shown where necessary.
- Mathematical tables and silent electronic calculators may be used.

Question	Maximum score	Candidate's score
1	12	
2	12	
3	11	
4	10	
5	12	
6	12	
7	11	
Total	80	

This paper consists of 10 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

© RACH–2011 Form Four 1 Chemistry 233/2

(a) the table below shows some properties and electronic arrangement of ions of elements represented by letters P to X. Study the information and answer the questions that follow. The letters are not the actual symbols of elements.

Element 🖓	Formula of	Electronic	Atomic	Ionic
ر ان م	ion	arrangement of ion	radius (nm)	radius (nm)
P Past.	p^{2+}	2.8.8	0.174	0.097
$Q_{\mathcal{O}}$	Q ⁻	2.8	0.072	0.136
, ØŘ, Č	R^+	2.8.8	0.203	0.133
00 1 10 m	S^{3+}	2.8	0.125	0.050
T	T^{2+}	2.818.8	0.191	0.113
Pentin T U	U^{2+}	2.8	0.136	0.065
· V	V^{+}	2.8	0.157	0.095
W	W^{+}	2	0.133	0.060
X	X^{-}	2.8.8	0.099	0.181
i) Cirra tha atamia	wash and of alams	nta T and V		(1 1-)

(i) Give the atomic numbers of elements **T** and **V**

(1mk)

(1mk)

T..... V.....

II the atomic radius of R is larger than its ionic radius

(ii)	What is the name	given to	o the family	of elements to	which R.V at	nd W belong.(1mk)
•	,		B				

.....

(iii)Explain why:

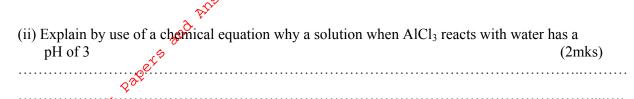
1

I The atomic radius of S is smaller than that of V (1mk)

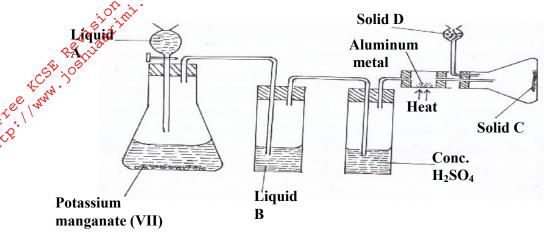
.....

(iv) Using dots (•) and crosses (x) to represent outermost electrons, show the bonding in the compound formed between U and X (2mks)

(v) Describe how a mixture of V chlorine s Lead(II) chloride can be separed


(b) Study the information given in the table below and answer the questions that follow.

formula of compound	NaCl	$MgCl_2$	AlCl ₃	SiCl ₄	PCl_3	LCl_2
Boiling point (°C)	1470	1420	Sublimes at	60	75	60
Melting point (°C)	800	710	180°C	-60	-90	-80


(i) Explain why the melting point and boiling points of MgCl₂ are very high yet melting point and boiling point of PCl₃ are very low. (2mks)

.....

© RACH–2011 Form Four 2 Chemistry 233/2

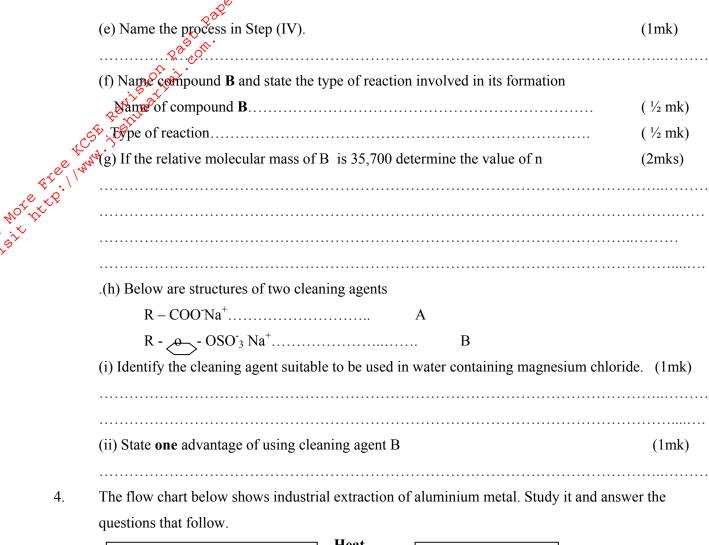
2. (a) Study the diagram below and use it to answer the questions that follow.

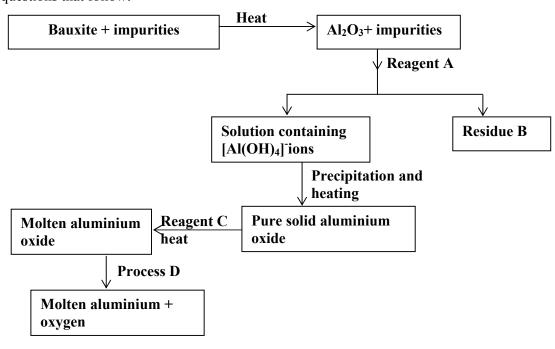
(i) Name liquids A and B

A	(IIIIK)
B	(1mk)
(ii) Suggest a suitable reagent that can be used as solid D	(1mk)
(iii) State the role of Solid D	(1mk)
(iv) Write a balanced chemical equation for the reaction in the conical flask	(1mk)
(v) Explain why solid C collects further away from the heated aluminium metals.	(1mk)

(1mk)

(vi) In the combustion tube above, 0.675g of aluminium metal reacted completely with 1800cm³ of chlorine gas at room temperature. Determine the molecular formula of Solid C, given that its relative formula mass is 267 (Al= 27.0, Cl= 35.5 molar gas volume at r.t.p = 24.0 litres) (3mks)


(b) The reaction between hot concentrated sodium hydroxide and chlorine gas produces Sodium Chlorate (V) as one of the products


(i) Write the equation for the reaction. (1mk)

© RACH—2011 Form Four 3 Chemistry 233/2

(ii) Give **one** use of sodium chlorate.(V) (1mk) (c) Explain the difference between bleaching by chlorine and bleaching by sulphuric (IV)oxide gases. (2mks) The scheme below shows a series of reactions starting with Propanol. Study it and answer the questions that follow questions that follow. Solution A + hydrogen gas Potassium metal **Propanol NaOH** Step I CH₃CH₂COONa CH₃CH₂COOH H+/KMnO₄ (g) CH₃CH₂CH₂OH Step III Step II Step IV **Butanol** Conc CH₂=CHCH₃ Compound E CH₃CH₃ H₂SO₄, heat 1 mole of Cl₂O) Product $C + H_2O_{(1)}$ Compound Compound D + HCl CH_3 {CH₂− CH /n (a)(i) Name the type of reaction in steps I and II Step I.... $(\frac{1}{2} \text{ mk})$ $(\frac{1}{2} \text{ mk})$ Step II..... (b) Write the equation for the reaction that takes place in Step III (1mk) (c) Name substances labeled A.C.D and E (2mks)A..... C..... D..... (d) Draw the structural formula of product C. (1mk)

© RACH– 2011 Form Four 4 Chemistry 233/2

© RACH–2011 Form Four 5 Chemistry 233/2

(a)Name two main impurities found in bauxite (1mk)

(b) Name reagents A and C

Reagent A. (1mk)

(1mk)

(2mks)

Name...

Reason...

(d) When 3.12g of hydrated aluminium oxide (Al₂O₃.nH₂O) was heated to a constant mass,

2.06g of aluminium oxide was obtained. Determine the value of n in hydrated aluminium oxide.

(Al=27.0,O=16.0 H=1.0) (3mks)

(e) Explain why it is necessary to heat aluminium oxide in the presence of reagent C before process D is Carried out . (1mk)

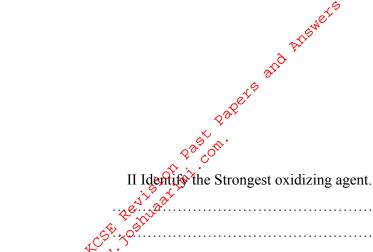
(a) State the particles responsible for conductivity of an electric current in (2mks)

- (i) Solution.
- (ii) A metal....
- (b) Study the standard electrode potentials for the half-cells given below. The letter do not represent the actual symbols of the elements.

half cell
$$U^{+}_{(aq)} + e^{-} \longrightarrow U_{(s)} \qquad -3.02$$

$$V^{2+}_{(aq)} + 2e^{-} \longrightarrow V_{(s)} \qquad -2.87$$

$$W^{2+}_{(aq)} 2e^{-} \longrightarrow W_{(s)} \qquad +0.34$$

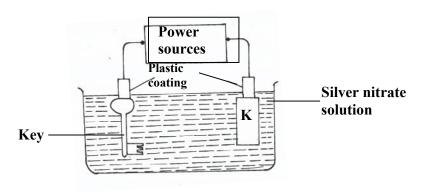

(i) Calculate the e.m.f of a cell made by

(1mk)

I U and V

5.

© RACH–2011 Form Four 6 Chemistry 233/2


II Identify the Strongest oxidizing agent. (1mk)

· ¿e na

(ii) Determine the equation of the cell reaction made of \mathbf{U} and \mathbf{W} . (1mk)

(iii) Show the conrentional cell representation for the cell reaction in b(ii) above. (1mk)

(e) One use of electrolysis is electroplating as shown below.

(i) To what terminal of the power source is the key connected? (1mk)

.....

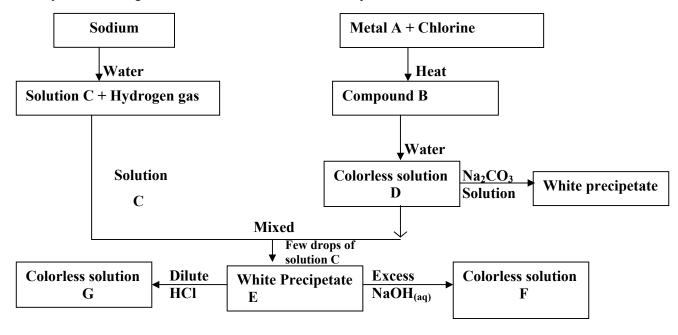
(ii) Name the most suitable material for electrode \mathbf{K} (1mk)

.....

(iii) Write the

I Anode reaction

II Cathode reaction


© RACH—2011 Form Four 7 Chemistry 233/2

Pagets and Aremets

(iv) If 3A power source was used for 5 hours, calculate the increase in mass of the Key.

$$ag = 108, 1 \text{ Fa} = 96500\text{C}$$
 (3mks)

6. Study the flow diagram below and use it to answer the questions that follow.

- (a) Give the name and formula of the following.
- (i) White precipitate E

(ii) Colourless solution F

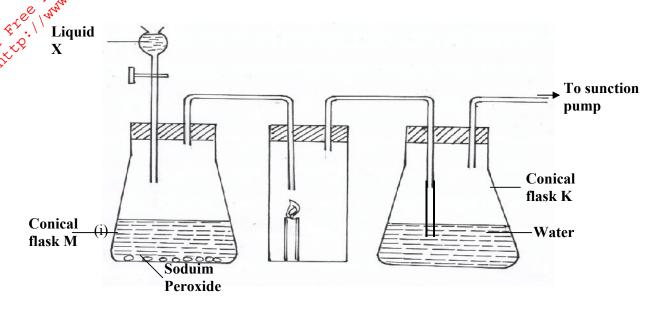
HCl acid.

Formula.....(1mk)

(1mk)

(b) What property is exhibited by white precipitate E when it reacts with Sodium hydroxide and

.....


© RACH—2011 Form Four 8 Chemistry 233/2

		\$00°	on.														•••
	(d) The	mferma ous temp	tion beloerature	ow giv	ves the	solul	bilitie	s (In	g/10	0g of	wate	er) of	subs	tance	s X and	l Y a	ıt
, cr	Tampa						0	20		40		60	8	80	100		1
ce tro	Solubil	ity g/100	0g of wa	ater	X		10	15		26		40	(63	100		1
%.\\ %					Y		30	34		37		40	4	44	48		
•	(i) Plot a	a graph o	of solub	ility a	gainst	temp	eratur	e for	the t	wo sal	lts X	and	y on	the sa	ime ax	is. (4	n
3																	#
3																	
																	#
=																	
							e de la composition della comp										Ì
																	i

a anamer

III Calculate the mass of crystals of substance X which will deposit when a solution containing 50g of X in 100g of water initially at 80°C is cooled to a temperature of 30°C (1mk)

7. The diagram below shows a set – up that was used to prepare oxygen gas and passing it over a burning candle. The experiment was allowed to run for some time.

	(i) Name liquid X	(1mk)
	(ii) Suggest the PH of the solution in conical flask K .	(1mk)
	(iii)Write an equation for the reaction taking place in the conical flask M.	(1mk)
	(b) State and explain the two observation made when hydrogen sulphide is bubbled solution containing Iron (III) chloride.	(2mks)
(c	(i) Describe a simple chemical test that can be used to distinguish carbon (IV) oxid	

Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com Connect with Joshua Arimi on facebook.

Form Four

10

Chemistry 233/2

© RACH- 2011

© RACH–2011 Form Four 11 Chemistry 233/2