Name: \qquad
\qquad

School: \qquad Candidate's Sign. \qquad
Date: \qquad

233/3

RACHUONYO SOUTH DISTRICTJOINT EVALUATIONTEST

Kenya Certificate of Secondary Education (K.C.S.E.)

Chemistry

Practical

INSTRUCTIONS TO THE CANDIDATES:-

- Write your name and index number in the spaces provided
- Sign and write the date of examination in the spaces provided
- Answer all the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- All working MUST be clearly shown where necessary.
- Use the first 15 minutes of the $21 / 4$ hours to ascertain you have all the chemical sand apparatus tha you may need.

For Examiners use Only

QUESTION	MAX. SCORE	SCORE
1	19	
2	10	
3	11	
TOTAL	$\mathbf{4 0}$	

This paper consists of 4 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.
(C) $\mathrm{RACH}-11$

Form Four 1

1. You are provided with:

- Solution R - sodium throsulphate containing 79 g of the solute in 100 cm 3 of solution.
- Solution S - hydrochloric acid.

You are required to

- Determineshow rate of reaction between sodium thiosulphhate and hydrochloric acid vareés dpîth temperature.
- Detegnine ' the concentration of hydrochloric acid solutions S

Procedarre.

Using a measuring cylinder, transfer exactly 10 cm 3 of the solution R into a conical flask. Make a cross(x) on a white piece of paper and place the flask on the $\operatorname{cross}(\mathrm{x})$ on the paper.Using another clean measuring cylinder measure $10 \mathrm{~cm}^{3}$ of solution S and note its temperature; transfer the solution s into conical flask containing R and immediately start the stop watch. Swirl the mixture and record the time taken for the $\operatorname{cross}(\mathrm{x})$ to be blocked. Repeat the procedure at varying temperatures and fill the table below.

Table I

Volume of R $\left(\mathrm{cm}^{3}\right)$	10	10	10	10	10	10
Volume of S $\left(\mathrm{cm}^{3}\right)$	10	10	10	10	10	10
Temperature of S $\left({ }^{\circ} \mathrm{C}\right)$	25	30	40	50	60	70
Time taken for cross to be blocked (sec)						
Reciprocal of time $\frac{\mathrm{I}}{\text { Time }}$ or $\frac{\mathrm{I}}{\mathrm{t}}$						

a) Using the table above plot a graph of reciprical of time (y-axis) against temperature.

b) From the graph determine the time required for the reaction to be complete at $55^{\circ} \mathrm{C}$. (1 mk)

c) What will be thee temperature for the reactions when time taken fro complete reaction in 15 secondss.
(d) How does the rate of reaction vary with varying temperature? Explain
e) Given the equation for the reaction in the flask to be

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \quad 2 \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{(\mathrm{s})}+\mathrm{SO}_{2(\mathrm{~g})}
$$

(i) Calculate the moles of sodium thiosulphate that are in $10 \mathrm{~cm}^{3}$ of solution R
(ii) Workout the moles of hydrochloric that reacted with $10 \mathrm{~cm}^{3}$ of R
(iii) What is the concentration of the hydrochloric acid.
(1mk)
2. You are provided with

- solutions U and V
- solution U is acidified potassium, manganate (VII)
- Solution V was prepared by dissolving 4.18 g of solid V in distilled water to make $250 \mathrm{~cm}^{3}$ of solution.

You are required to

Determine the number of moles on V that react with one mole of potassium Manganate(VII)

Procedure.

Place solution U in a burette. Pipette 25 cm 3 of solution V into a 250 cm 3 conical falsk. Titrate solution V with solution U until a permanent pink colour just appears. Record your results in table II below repeat the above procedure two more times.
Table II

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution $\mathrm{U}\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution U used.
(b) Given that the concentration of solution U is 0.02 M , Calculate the number of moles of potassium manganate (VII) used. ${ }^{\text {s }}$
(c) Determine eorncentration of solution V in moles per litre (relative formula mass of V is 278) (1 mk)
(d) Deterimine the moles of V
(c(i) $\operatorname{Tn} 25.0 \mathrm{~cm}^{3}$ solution
(ii) Which react with one mole of potassium manganate(VII)
3. You are provided with solid W. Cary out the tests below and record your observation and inferences in the spaced provided.
(a) Place $1 / 2$ spatula end-full of W on a white tile and try to crush with you one fingure.

Observations	inference	
	$(1 / 2 \mathrm{mk})$	
$(1 / 2 \mathrm{mk})$		

(b) Place one spatula end-ful of W into a test tube, heat gently then strongly

Observations	inference		
	$(2 \mathrm{mks})$		$(1 \mathrm{mk})$

(c) Place $1 / 2$ (half) spatula end -ful of W into a boiling tube, add 10 cm 3 of distilled water and shake well until all the solid dissolves and divide into 3 portions.
(i) To the $1^{\text {st }}$ portion add, 0.2 M sodium hydroxide dropwise till excess.

Observations	inference		
	$(1 \mathrm{mk})$		$(2 \mathrm{mks})$

(ii) To the $2^{\text {nd }}$ portion, add 2 to 3 drops of 0.2 M sulphuric acid.

Observations	inference	
$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

(iii) To the $3^{\text {rd }}$ portion, add $4-5$ drops of 0.2 M lead (II) nitrate solution and heat to boiling Observations
inference

