Name: $\qquad$ Index no $\qquad$

School: $\qquad$
$\qquad$
Date: $\qquad$

121/1
MATHEMATCCS
PAPER $1 e^{j}{ }^{2}$
JULYAAUGUST 2011
TIME: 2. $9 / 2$ HOURS

# RACHUONYO SOUTH DISTRICT JOINT EVALUATIONTEST 

## Kenya Certificate of Secondary Education (K.C.S.E.)

## Mathematics

Paper 1

## INSTRUCTIONS TO CANDIDATES:

- Write your name, index number, Signature and write date of examination in the spaces provided
- The paper contains two sections. Section I and Section II.
- Answer ALL the questions in section I and any five questions in section II.
- Answers and working must be written on the question paper in the spaces provided below each question.
- Show all steps in your calculations below each question.
- Marks may be given for correct working even if the answer is wrong.
- Non programmable silent electronic calculators and KNEC mathematical table may be used, except where stated otherwise.


## FOR EXAMINERS USE ONLY

## SECTION 1

| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Marks |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## SECTION II

| Question | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Marks |  |  |  |  |  |  |  |  |  |

Grand Total


[^0]
## SECTION I

Answer all questions in the spaces provided.

1. Without use of mathematical tables or calculators evaluate.
(3mks)
$Q^{02}$



2 If $\log 2=0.30103$ and $\log 3=0.47712$, find the logarithm of 36 without using tables or a calculator. (3mks)
3. The vertices of a triangle are $A(1,1) B(5,12)$ and $C(4,5)$. Find the area of the triangle. $(3 \mathrm{mks})$
4. A map is drawn to a scale of $1.200,000$ what is the area in $\mathrm{Km}^{2}$ represented by a rectangle measuring 4.5 cm by 3.5 chri

(3mks)

Under an enlargement the images of the points $A(3,1)$ and $B(1,2)$ are $A^{1}(3,7)$ and $B^{1}(7,5)$. Find the centre and the scale factor of the enlargement.
6. Find the equation of the line which passes through the point of intersection of the lines $y+2 x=8$ and $2 y-x=6$ and the point $(4,3)$
(4mks)
7. By using the substitution $y=3$ or otherwise solve $9^{x+1}-3 x=3^{x+3}-3$

8 The angle of elevation of the top of a building from a boy 1.2 metres tall is $30^{\circ}$. If the boy is 10 meteres from the building, calculate the height of the building.
9. When a shopkeeper sells articles at sh. 24.05 each, he makes a $30 \%$ profit on the Cost price. During a sale he reduces the price of each article to sh.22.95. Calculate the percentage profit on an article sold at the sale price.
(4mks)
10. Given that $(x+a)(x+3)=x^{2}+r^{5} x+12$, for all values of $x$, find (i) a

(2mks)
(1mk)
11. Express $3.242 \ddot{4} \ldots \ldots$. as a fraction in its simplest form
12. Simply $\frac{2\left(x^{2}-36\right)}{2 x^{2}-7 x-30} \div \frac{x-4}{2 x+5}$
13. Solve the simultaneous equations.
14. In the triangle ABC below $<\mathrm{A}=85^{\circ},<\mathrm{C}=56.4^{\circ} \mathrm{b}=4.84 \mathrm{~cm}$


Calculate
(a) the length of $\mathbf{a}$
(b) the length of $\mathbf{c}$
15. Naomi and Mooney live 40knta part Naomi starts from her home at 8.00 a.m and cycles towards Mooney's house at $16 \mathrm{~km} / \mathrm{hr}$. At $8.30 \mathrm{a} . \mathrm{m}$, Mooney starts from her home and cycles at $8 \mathrm{~km} / \mathrm{h}$ towards Naomi's. At what time and spot do they meet?
16. Find the inequalities that define the shaded region in the diagram below.

17.

18. (a) A ladder 10 m long deans against a wall and makes an angle of $60^{\circ}$ with the horizontal line.
(i) How high up the wáll does the ladder reach?

(ii) How far from the wall is the foot of the ladder?
(2mks)
(iii) State the angle of depression of the ladder?
(1mk)
(b) A vertical post AB casts a shadow of 12 metres.
(i) When the angle of elevation of the sun is 530 . Find the height of the post above the ground.
(ii) Find the direct distance from the tip of the post to the tip of the shadow using Pythagoras theorem correct to 2 significant figures.

19. Two business partners, Daul and Jerry contributed Ksh. 112,000 and Ksh 128,000 respectively to start a business. The ach to share their profits as follows:

$25 \%$ to beshaed in the ratio of their respective contributions, and $40 \%$ to be retained for the runfing of the business.

(a) ofheamount each received.
(7mks)
(b) The amount retained fort he business.
(c) Their percentage profit for the whole year
(a) Express as a single fraction in its simplest form $\frac{200}{x}-\frac{200}{x+4}$
(b) When driven in town, a car runs $x \mathrm{~km}$ on each litre of petrol.
(i) Find, in terms of $x$, the number of litres of petrol used when the car is driven 200 km in town.
(ii) When driven out of town, the car runs $\mathrm{x}+4 \mathrm{~km}$ on each litre of petrol. It uses 5 litres less petrol to go 200 km out of town than to go the same distance in town. Use this information to write down an equation involving $x$, and show that it simplifies to $x^{2}+4 x-160=0$
(c) Solve the equation $x^{2}+4 x-160=0$
(3mks)
(d) Calculate the total volume of the petrol when the car is driven 40 km in town.
21. A closed container is made by joining together a cylinder of radius 9 cm and a hemisphere of radius 9 cm , as shown in the figure below. The Length of the cylinder is 18 cm . The container rests on a horizontal surface, ånd is exactly half full of water.

(a) Calculate the surface area of the inside of the container that is in contact with the water. ( 4 mks )
(b) The Container is held with its axis vertical, the hemisphere being at the bottom as shown in the diagram below.


Calculate the depth of the water.
(4mks)
(c) The container above turned upside down. Find the new depth of the water.
(2mks)
22. Under a translation $T$, the image of a triangle $A B C$ is $A^{1} B^{1} C^{1}$ and $A(1,2), B(-1,1) A^{1}(2,1)$ and $\mathrm{C}^{1}(1,-2)$
(a) Find the vegtor. describing $T$ and the coordinates of $B^{1}$ and $C$
(b) Find the coordinates of $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$, the image of $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ under a reflection in the line $x+y=2$
(6mks)
23. The table below shows कhe marks scored by 40 students in a test.

| Marks | $100 \$ 9$ | $20-24$ | $25-29$ | $30-34$ | $35-39$ | $40-49$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | $\mathbf{B}^{2}$ | 4 | 7 | 10 | 9 | 7 |

(a) Calculate thge mean mark.
(3mks)
(b) Calculate the median mark
(3mks)
(c) Calculate the standard deviation.
24. In the figure below, notdrawn to scale, O is the centre of the circle, $\mathrm{AB}=\mathrm{BC}$ and are chords, AC is also a chord $Q E^{2}=5 \mathrm{~cm}$.

(a) (i) Determine the value of angle ABC
(2mks)
(ii) Calculate the length of BC
(b) Determine the are of the quadrilateral ABCD


[^0]:    This paper consists of 11 printed pages. Candidates should check to ascertain that all papers are printed as indicated and that no questions are missing
    (c) $\mathrm{RACH}-2011$

    Form Four 1
    Mathematics 121/1

