\qquad
SCHOOL: \qquad Candidate's signature: \qquad
Date: \qquad

121/1

MATHEMATICS ${ }^{2}{ }^{2}$
Paper 1

July/August

$21 / 2$ Hours ${ }^{\text {S }}$

KITUI WEST DISTRICT JOINT EVALUATION TEST- 2011

Kenya Certificate of Secondary Education

121/1

MATHEMATICS

Paper 1

July/August
$21 / 2$ Hours

INSTRUCTIONS TO CANDIDATES

(a) Write your name and index number in the spaces provided above.
(b) Write the date of examination in the spaces provided above.
(c) This paper consists of TWOsections. Section I and Section II.
(d) Answer ALL the questions in section I and onlyFIVE questions from Section II
(e) All answers and working must be written on the question paper in the spaces provided below each question.
(f) Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
(g) Marks may be given for correct working even if the answer is wrong.
(h) Non- programmable silent calculators and KNEC mathematical tables may be used except where stated otherwise.
(i) This paper consists 16 printed papers
(j) Candidates should check the question paper to ascertain that all the papers are printed as indicated and that no questions are missing.

FOR EXAMINER'S USE ONLY

SECTION 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

GRAND
TOTAL

SECTION 1 (50 MARKS)

1. Evaluate without using f^{5} a calculator,

(3mks)
2. Three consecutive odd numbers add up to 369 . Determine the three numbers.
(2mks)
3. A container 18 cm high holds $225 \mathrm{~cm}^{3}$. Calculate the volume of a similar container which is 72 cm high.
4. Line L passes through $P(8, \sigma)$ and is perpendicular to the line $3 y+2 x+6=0$. Find the equation of line L and write it in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
5. The distance between points P and Q on a section of a straight road is 12 km . Mukai and Mutua left points P and Q respectively at the same time and moved towards each other at $1 \mathrm{~m} / \mathrm{sec}$ and $1.5 \mathrm{~m} / \mathrm{s}$ respectively.
Calculate a) their relative speed.
b) The time they will take before meeting.
6. Find correct to 3 s.f the value of;

7. Find the values of w, and $w i n$ the figure.

8. Juma, Ali and Hassan share the profit of their business in the ratios $3: 7: 9$ respectively. If Juma receives sh60,000. How much profit did the business yield .
9. Simplify as far as possible the following;
10. Three taps A, B and C can $\underset{\sigma^{\prime}}{ }$ îll a water tank in 30 minutes, 25 minutes and 15 minutes respectively. If the three taps are turned on for 5 minutes then A and C are closed. How long would it take before the tank is filled.
11. Find the area of an equilateral triangle whose sides are 18 cm .
(3mks)
12. Solve for in the equation.

$$
\sin \left(2-10=-0.5 \text { for the range } 0^{\circ} \leq{ }^{\circ} \leq 360^{\circ}\right.
$$

13. Solve the equation.

$$
\begin{equation*}
\log (-9)=\log 8,+1 \tag{3mks}
\end{equation*}
$$

14. The length and width of a rectangle are stated as 18.5 cm and 12.4 cm respectively. Both measurements are given to the nearest 0.1 cm .

Calculate the percentage error in the area.
15. Find the range of values of x which satisfy the following inequalities simultaneously $4 x-9<6+x$ $8-3 x \leq x+4$ and represent them on a number line.
16. In the fig below. Calculated

SECTION II (50 MARKS)

17. A trader sold an itema $a^{5} \operatorname{sh} 7500$ after allowing his customer 15% discount on the marked price of the item. In so doing he made a profit of 35%.
a) Calculateci) कhie marked price of the item.
ii) The price at which the trader had bought the item.
b) If the trader had sold the item without giving a discount, calculate the percentage profit he would have made.
c) To clear his stock the trader decided to sell the remaining items at a loss of 10%. Calculate the price at which he sofd each item.

180 . The figure below is a model representing a rocket capsule. The model whose total height is 15 cm is made up of a conical top; a hemispherical bottom and the middle part is cylindrical. The radius of the base of the cone and that of the hemisphere are each 3 cm . The height of the cylindrical part is 8 cm .

a) Calculate the external surface area of the model.
b) The actual rocket has a को painted. Calculate the amount of paint required if an area of $20 \mathrm{~m}^{2}$ requires 0.75 litres of the paint. $e^{2 e^{2}}$ (6mks)
19. The frequency distribution table below represents the number of kilograms of meat sold in butchery.

Mass in kg	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$	$26-30$	$31-35$
Frequency	2	3	6	8	3	2	1

a) State the modal frequency.
(1mk)
b) Calculate the mean mas using assumed mean of 18 kg .

c) Calculate the median mass.
(3mks)
20. a) The table below shows measuring cylinder readings Vcm^{3} of water displaced by x marbles in an experiment.

Vcm^{3}	39.4	68.2	83	97.4
x	4	8	12	16

i) On the graph paper provided $\operatorname{plot}(x, v)$.
ii) Use the plotted points to draw the line of best fit.

© 2011, Kitui West District Joint Evaluation test
Tips on passing KCSE subscribe freely @ http://www.joshuaarimi.com Connect with Joshua Arimi on facebook.
b) Using the line of best fit ${ }_{\partial}$ determine;
i) The averageporlume of the ball bearing.

ii) The equation of the line.
(2mk)
c) Using the equation of the line in b(ii) above determine the volume of the water in the cylinder.
(2mks)
21. The fig shows two intersecting circles with centres A and B and radii 7 cm and 10.5 cm respectively. The distance between $\mathrm{AB}=14$ and $\mathrm{AM}: \mathrm{MB}=3: 4$.

Calculate to four significaneffig the;
a) Size of angle $\mathrm{CAD}^{\text {s }}$
c) Area of shaded region (use $=3.142$).
22. The figure below shows a $\in \underset{\partial}{\text { fricle ce centre } O P Q R S}$ is a cyclic quadrilateral and QOS is a straight line.

Giving reasons for your answers find the size of;
a) Angle PRS
b) Angle POQ
c) Angle RPS
d) Angle PSR
e) Reflex angle POS
23. In an n-sided polygon two anngles are right angles and each of the remaining angles is 150°
a) Find the value of \mathfrak{n} nence the sum of interior angles of this polygon.
(4mks)
b) Name the polygon.
c) Find the area of a regular octagon of sides 4 cm to 5 sf .
24. In the figure below, C is a_{2} なoint on AB such that $\mathrm{BA}=4 \mathrm{BC}$ and D is the mid point of $\mathrm{OA} O \mathrm{OC}$ and

Given that $\mathrm{OA}=\underset{\sim}{a}$ and $\mathrm{OB}=\mathfrak{b}$
a) Write the vectors below in terms of a and b
i) $\quad \mathrm{AB}$
ii) $\quad \mathrm{OC}$
iii) $\underset{\sim}{B D}$
b) If $B X=h, B D$ express ox in terms of a, b and h
c) If ox $=\mathrm{KOC}$, find h and $\underset{\partial}{ }{ }^{+} \mathrm{k}$
d) Hence express ox in terms of a and b only

