Name:		c ⁰¹¹	Index No
School:		,Date:	Candidate's Sign
	, yê	50.5	
	et eet		
233/3	way.		
CHEMIS PAPER 3	(PRACTICAL)		
FORM 4 MARCH	/ APRIL 2013		
TIME: 2 ¹	/ HOURS		
. C.5 ⁴⁵ Q ⁰			
ee e			
	KINGO NORIH	IRIAL EXA	MINATIONS - 2013
	ine nenya Certificat	e of Secondary	

BARINGO NORTH TRIAL EXAMINATIONS - 2013 The Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- 1. Write your name and index number in the spaces provided.
- Sign and write the date of examination in the spaces provided. 2.
- Answer all the questions in the spaces provided. 3.
- All working MUST be clearly shown where necessary 4.
- 5. Mathematical tables and silent electronics calculators may be used.

Question	Maximum Score	Candidate Score
1	14	
2	13	
3	13	
TOTAL	40	

FOR EXAMINER'S USE ONLY

1. You are provided with solution A, 0.046 M of H_2SO_4 . Solid D 2.50g of mixtures of Na_2SO_4 and Na_2CO_3 salts.

You are required to determine the percentage of $Na_2 CO_3$ in the mixture.

Procedure

Place all solid D into a 100cm³ beaker and add to this 100cm³ of distilled water. Stir until all the solid dissolves; label this solution as solution D. Transfer solution D into a volumetric flask and rinse the beaker with distilled water then pour the content to the volumetric flask and add water to 250 cm³ mark. Place A into burette. Pipette $25cm^3$ of solution D into a $250cm^3$ conical flask. Add 3 drops of methyl orange indicator and titrate with solution A. Record your results in the table below. Repeat the titration two more times to obtain concordant results and fill the table1. **Table 1**

	\$°	Ι	II	III	
¢ Fina	al burette reading cm ³				
Intia	al Burette reading cm ³				
e Volu	ume of solution A over B				(Amarks)
Noter	ii) Calculate the average vo	lume of solutio	n A used		(1mark)
\$ ⁰¹	iii) Write the possible equat	tion of the overa	ll reaction in t	his experiment.	(1mark)
b)	Calculate the moles of A in	the titrated volu	ime		(2marks)
c)	i) Calculate the moles of B	that react with .	A		(1mark)
	ii) Calculate the concentrat	ion of D in mole	es per dm ³		(2marks)

d) Work out the percentage of D in the mixtures that reacted with solution A. (3marks)

- 2. You have been provided with the following
 - 70cm³ of solution B
 - 0.2M copper (ii) sulphate solution
 - 0.5g of zinc powder labeled solid E
 - Thermomenter $(0^{\circ}C 110\%)$
 - Stop clock / watch
 - 100cm³ plastic beaker

You are required to determine the molar enthalpy change of displacement of copper (ii) ions. Procedure

Using the 100cm³ measuring cylinder, measure 50cm³ of solution B and transfer it into the 100cm³ plastic beaker. Measure the temperatures of the solution and record it after every a half a minute in the spaces provided below. At exactly $2\frac{1}{2}$ minute carefully transfer the whole of solid Eanto the plastic beaker at once and stir the mixtures using the thermometer continuously and record the temperatures reading after every half a minute for the first five minutes in the

Time minutes	0	1⁄2	1	11⁄2	2	21/2	3	31/2	4	41⁄2	5
Temperatures (⁰ C)											

b) What is the temperature change?

Write an ionic equation for reaction c)

- Calculate; d)
 - i) The number of moles of copper (ii) ions in 50cm³ of solution (1mark)

(1mark)

- ii) Determine the enthalpy change of displacement of copper given that the density of solution is $1.0g / cm^3$ and specific heat capacity is C = 4200J/kg/k (2marks)
- iii) Determine the molar enthalpy change of displacement. (1mark)

You are provided with solid F. Carry out the test below and record your observations and 3. inferences in the spaces provided.

Place all of solid F into a boiling tube. Add 10cm³ of distilled water and shake well. Use 2cm³ portions of the mixture for the following reactions.

To a 2cm³ portion of the solution add a spatula of sodium hydrogen carbonate. Test any i) gases produced with both red and blue litmus papers.

Observation		Inferences		
white.				
, et t				
1×				
ert	1mk	1mk		

ii) To the second portion add 3 drops of barium nitrate (retain the mixtures for use in test (iii) below)

Observation	Inferences		
1mk	1½ mks		

For Note Free LCSE iii) To the mixture obtained in (ii) above add about 5cm³ of 2M Nitric (v) acid.

Observation		Inferences
	1mk	1mk
	TIIIX	

To the third portion add 2M sodium hydroxide drop wise till excess iv)

, <u>1</u> ,	1
Observation	Inferences
1mk	11/2 mks
1111K	172 111K5

To the forth portion add 2M aqueous ammonia dropwise till excess v)

Observation	Inferences
1mk	1mk

To the fifth portion add about 4cm³ sodium sulphate solution. vi)

Observation	Inferences			
1mk	1mk			