		COL	
NAME	••••••		INDEX NO
SCHOOL		t Pape	CANDIDATE'S SIGNATURE
	freekcse	\$ ²	DATE
233/1 CHEMISTRY	Tisit www.ft		
(THEORY)	L.C.		

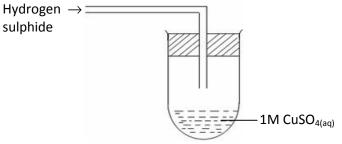
DATE

233/1 **CHEMISTRY** (THEORY) PAPER 1 JULY/AUGUST 2013 TIME: 2 HOURS

KIRINYAGA CENTRAL DISTRICT JOINT EXAMINATION - 2013

Kenya Certificate of Secondary Education **CHEMISTRY** PAPER 1 (THEORY) **TIME: 2 HOURS**

INSTRUCTIONS TO CANDIDATES:

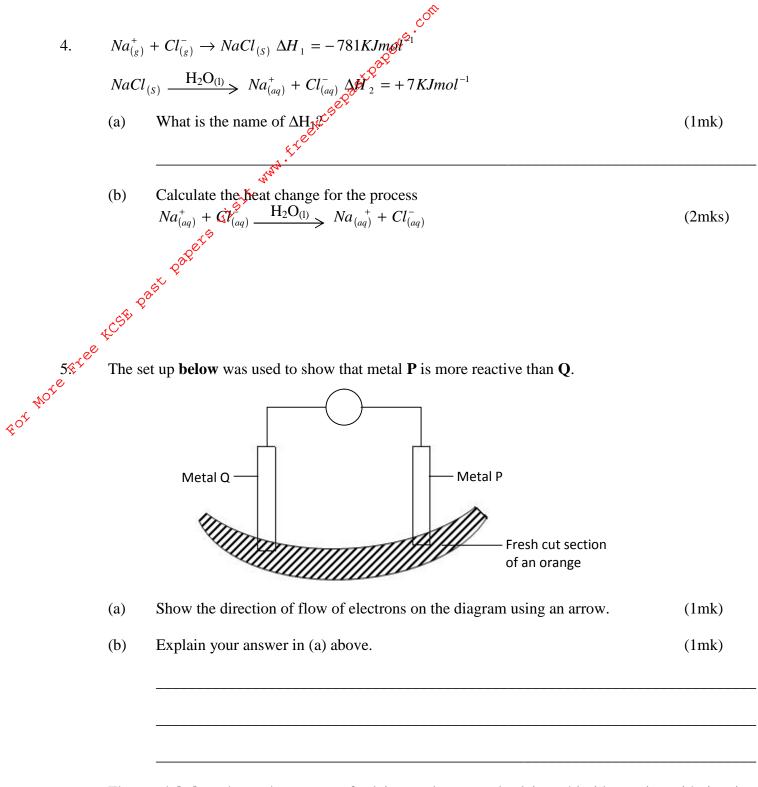

- Write your name and index number in the spaces provided above. ٠
- Sign and write the date of examination in the spaces provided above. •
- Answer all the questions in the spaces provided. •
- Mathematics tables and electronic calculators may be used. •
- All working must be clearly shown where necessary. •

FOR EXAMINER'S USE ONLY:

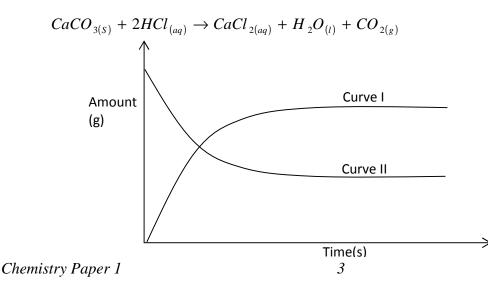
Question	Maximum Score	Candidates Score
1 - 30	80	

This paper consists of 12 printed pages. Candidates should check to ascertain that all the pages are printed as indicated and that no questions are missing.

		COL	
	1	A certain element Y has atomic number 15 and mass number of 31. (a) Calculate the number of neutrons in the element. (1m	ık)
		(b) Write the electron arrangement of the ion formed by element Y. $(1m)$	 1k)
		(c) How would the atomic size of the above element compare with another atom X whose number is 11 and mass number 23? Explain. (1m	
For Not	2 ^{%*ee}	Explain why the pH of 1.0M hydrochloric acid is 1.0M while that of 1.0M ethanoic acid is 5.0	 0. (2mks)
\$ ⁰⁷			
	3.	In an experiment hydrogen sulphide was passed through $1 \text{m CuSO}_{4(aq)}$ in a boiling tube as sho the diagram.	own in



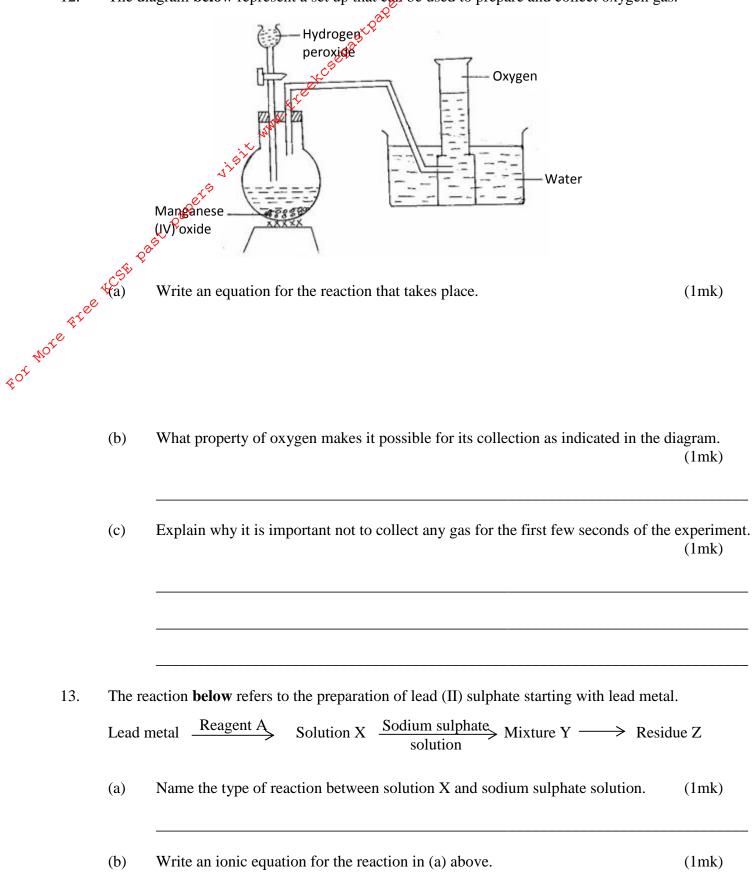
(a) State the observation made in the boiling tube. (1mk)


(b) Write the ionic equation for the above reaction.

(c) What precaution should be taken in carrying out this experiment? Give a reason? (1mk)

(1mk)

6. The graph **below** shows the amount of calcium carbonate and calcium chloride varying with time in the reaction.



		COTT	
	(a)	Which curve shows the amount of calcium chloride varying with time?	(1mk)
	(b)	Explain why the two curves become horizontal after a given period of time.	(1mk)
	(0)		(11111)
		white is a second secon	
	(c)	Sketch on the graph how curve II would appear if the experiment was repeated vilute hydrochloric acid solution.	using a more (1mk)
7.	The s	Q^{o} structure below represents two cleansing agents, L ₁ and L ₂ .	
and e	L_1	\rightarrow R - CH ₂ - CH ₃	
NOTE		OSO ₃ Na ⁺	
\$0 ⁵	L ₂ -	$\rightarrow R - COONa^+$	
	(i)	Identify each of the two cleansing agents, L_1 and L_2 .	
		L ₁	(½mk)
		L ₂	(½mk)
	(ii)	State a disadvantage of each of the above cleansing agents.	
		L ₁	(1mk)
		L ₂	(1mk)
8.		cm ³ of sodium hydroxide solution, containing 4.0g per litre of sodium hydroxide v	
		omplete neutralization of 0.1g of a dibasic acid. Calculate the relative formula masic acid (Na = 23.0 , O = 16.0 , H = 1.0).	uss of the (3mks)

- com Magnesium was burnt in air forming a white residue T. When put in a boiling tube with water 9. effervescence was noticed and a colouresseas D with a characteristic pungent smell was evolved. The gas turned a wet red litmus paper blue. Identify (a) Residue T. (i) (1mk) (ii) (1mk) Gas D Write an equation for the liberation of gas D. (b) (1mk) FOT NOTE Free ACSE Define half life of radioisotopes. (1mk)
 - (b) X grammes of a radioactive isotope take 100 days to decay to 20g. If half life of the element is 25 days, calculate the initial mass X of the radioisotope. (2mks)

11. Element X contains isotopes with mass number 16 and 18 respectively existing in the ratio 1: 3, calculate the relative atomic mass of X. (2mks)

com The diagram **below** represent a set up that can be used to prepare and collect oxygen gas. 12.

13.

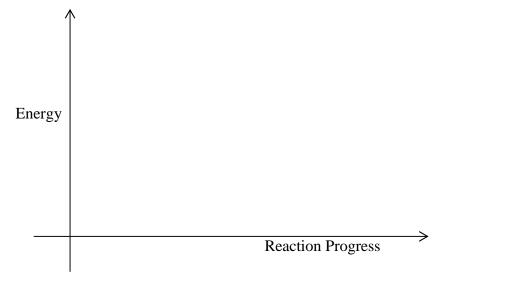
- com Explain why it is not possible to prepare residue Z using lead metal and dilute sulphuric acid. (c)
 - (1mk)
- Consider the following reaction at equilibrium. 14.

$$PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$$

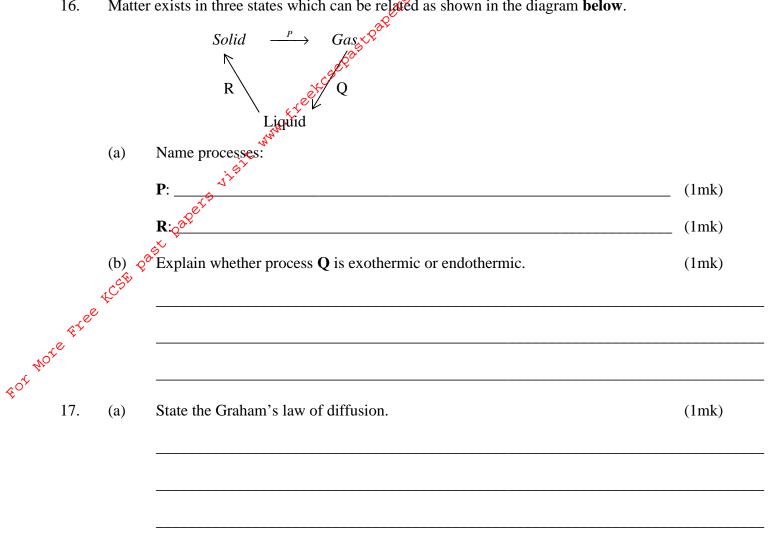
Complete the table **below** to show the effect of different factors on the position of equilibrium.

(2mks)

τ ^τ	Factor	Effect on equilibrium position
(i)	Decrease in pressure	
(ii)	Removing chlorine	
(iii)	Adding helium to the mixture	


FOT NOTE Free Study the information in the table below then answer the questions that follows.

Bond	Bond energy (kJmol ⁻¹
H - H	435
Cl – Cl	243
H - Cl	431


Calculate the enthalpy change for the reaction. (a) $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}$

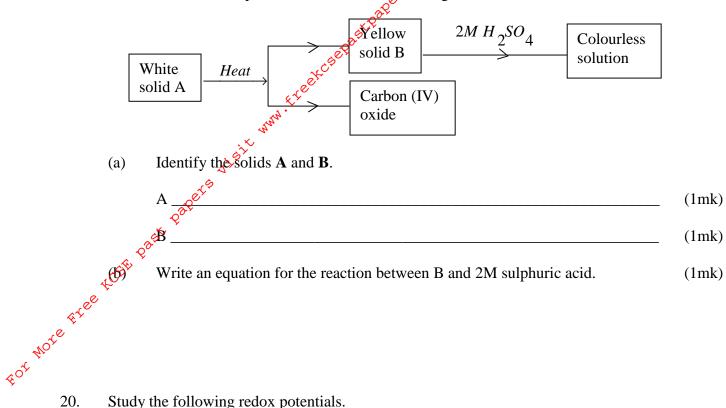
(2mks)

On the axis given **below** draw an energy level diagram for the reaction above. (b) (1mk)

con Matter exists in three states which can be related as shown in the diagram below. 16.

(b) 200cm^3 of nitrogen (I) oxide (N₂O) pass through a porous plug in 2 minutes 15 seconds. How long will it take the same volume of sulphur (IV) oxide (SO₂) gas to diffuse through the same plug under the same conditions. (N= 14, O = 16, S = 32). (3mks)

18. Write down the property of concentrated sulphuric (VI) acid shown in the following reactions.


(a)
$$H_2 C_2 O_4 . 2H_2 O_{(s)} \xrightarrow{H_2 SO_{4(l)}} 2H_2 O_{(l)} + CO_{2(g)} + CO_{(g)}$$

Property _______ (1mk)
(b) $C_{(s)} + 2H_2 SO_{4(l)} \rightarrow CO_{2(g)} + 2H_2 O_{(l)} + 2SO_{2(g)}$
Property ______ (1mk)

(2mks)

Chemistry Paper 1

17.

con The scheme **below** represents some reactions starting with a white solid A. 19.

20. Study the following redox potentials.

	E
$Fe^{3+}_{(aq)} + e^- \rightarrow Fe^{2+}_{(aq)}$	+0.77V
$Br_{2(aq)} + 2e^- \rightarrow 2Br_{(aq)}^-$	+1.09V

Using the values given above, predict whether the following reaction is possible. 2Fe

$$e_{(aq)}^{**} + 2Br_{(aq)}^{-} \to 2Fe_{(aq)}^{**} + Br_{2(aq)}$$
 (3mks)

com A saturated solution contains 7.5g of solute in 20cm³ of water. When the solution is cooled 21. (a) crystals begin to appear at 10°C. Silculate the solubility of the solute at 10°C. (2mks)

papets visit www.freetcset hat What causes permanent water hardness?

(b)

FOR NOTE Free HCSE When excess chlorine gas is bubbled through dilute sodium hydroxide solution, the resulting solution acts as a bleaching agent.

Write an equation for the reaction between chlorine gas and sodium hydroxide solution. (1mk) (a)

(1mk)

(b) Explain how the resulting solution acts as a bleaching agent. (2mks)

23. A, B, C, D are dyes present in a mixture C is more soluble than B, A is more soluble than C and D is the least soluble in a given solvent. Draw around-paper chromatogram showing how they would appear when separated using the solvent. (2mks)

		v are PH values of some solutions.			
	Solut PH	tion Z Y X W 6.5 13.5 2.2 7.2			
	(i)	Which solution is likely to be			
		I Acidic rain ⁹	_ (½mk)		
		II Potassium hydroxide	(¹ /2mk)		
	(ii)	A basic substance V reacted with both solutions Y and X. What is the nature of			
	(iti)	Name two substances that show these characteristics in question (ii) above.	(1mk)		
More Free	,				
پ 25.	Hydro (a)	ogen gas was passed over hot copper (II) oxide in a combustion tube. Write an equation for the reaction which took place.	(1mk)		
	(b)	What observations were made in the combustion tube?	(1mk)		
	(c)	Name any other gas which could be used to reduce copper (II) oxide.	(1mk)		
26.	(a)	Element A and B have atomic numbers 6 and 1 respectively illustrate the type formed when the two elements combine.	of bonding (2mks)		
		Explain why solid sodium chloride does not conduct electricity while sodium c			

	co ^{re}	
27.	'Dry ice' is preferred to ordinary ice as a refrigerant. Explain.	(2mks)
	'Dry ice' is preferred to ordinary ice as a refrigerant. Explain.	
	rsepa-	
	fiteette	
	X WWW	
28.	State one use of argon which is also a use of nitrogen gas.	(1mk)
	or the second seco	
	restr	
29.	An element P has a relative atomic mass of 88 when a current of 0.5 amphe	eres was passed through

29. An element P has a relative atomic mass of 88 when a current of 0.5 ampheres was passed through the fused chloride for 32..16 minutues, 0.44g of P were deposited at the cathode. Determine the charge on an ion of P. (IF = 96500 coulombs). (3mks)

30. Consider the equation.

 $NH_{3(g)} + H_2O_{(l)} \rightarrow NH_{4(aq)}^+ + OH_{(aq)}^-$

- (a) Identify the acid and base in the above equation using Bronsted Lowry theory. (3mks)
 Acid ______ (1mk)
 - Base(1mk)Reason(1mk)