$\qquad$ .

Candidate's Signature

## Date

## 

JUNE/JULY 2013
TIME: $2{ }_{4}^{1 / 4 O U R S}$

# KIKUYU DISTRICT INTERSCHOOLS EVALUATION KENYA CERTIFICATE OF SECONDARY EDUCATION 

## 233/3

## CHEMISTRY

PAPER 3 (PRACTICAL)
TIME: $\mathbf{2 1}_{4}^{1 / 4}$ HOURS

## INSTRUCTIONS TO CANDIDATES

(a) Answer ALL questions in the spaces provided in the question paper.
(b) You are NOT allowed to start working with the apparatus for the first 15 minutes of the $2 \frac{1}{4}$ hrs allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
(c) All working must be clearly shown where necessary.
(d) Mathematical tables and silent electronic calculators may be used.

For Examiner's use only

| Questions | Maximum Score | Candidate's Score |
| :---: | :---: | :---: |
| 1 | 10 |  |
| 2 | 14 |  |
| 3 | 16 |  |
| Total Score | 40 |  |

1. (a) Your are provided with
(i) Solution A was prepared dissolving 10 g of sodium hydrixide in $500 \mathrm{~cm}^{3}$ distilled water.
(ii) Solution B is sulphuric (VI) acid

You are expected to determine thie concentration of sulphuric (VI) acid in moles per litre.
Procedure:
Fill the burette with solation B. Pipette $25 \mathrm{~cm}^{3}$ of solution A and transfer into the conical flask and add few drops 0 f complete the table 1 below.

Table ${ }_{2}^{2} a^{e}$

(ii) Calculate the number of moles of sodium hydroxide used. (1 mark)
(iii) Calculate the number of moles of sulphuric (VI) acid used.
$\qquad$
$\qquad$
$\qquad$
(iv) Determine the concentration of sulphuric (VI) acid in moles per litre.
$\qquad$
$\qquad$
$\qquad$
(v) Determine the concentration of sulphuric (VI) acid in grammes per litre.
( $\mathrm{s}=32, \mathrm{O}=16, \mathrm{H}=$ )
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2. In this experiment you are expected to deternine the molar heat of neutralization of sulphuric (VI) acid with 2 M sodium hydroxide. Aだ $\mathrm{Casure} 20 \mathrm{~cm}^{3}$ of sulphuric (VI) acid, solution C and transfer into 100 ml plastic beaker provided. Measure its temperature and record in the table below under $1^{\text {st }}$ column. Take $5 \mathrm{~cm}^{3}$ of 8 slution D and add to this solution, stir with the thermometer and record the final steady termperature. Consider to add $5 \mathrm{~cm}^{3}$ of $D$ to the same solution and record the final steady.temperatures until $40 \mathrm{~cm}^{3}$ of $D$ has been added.
Table II

| Volume of $\mathrm{H}_{2} \mathrm{SO}^{4} \mathrm{C}$ used $\left(\mathrm{cm}^{3}\right)$ | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Volume os ${ }_{2} \mathrm{~N}^{2} \mathrm{NaOH}(\mathrm{aq}) \mathrm{D}$, Added $\left(\mathrm{cm}^{3}\right)$ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
| Highest $\Psi^{2} \mathrm{~m}$ ) |  |  |  |  |  |  |  |  |  |

(i) On a graph paper, plot a graph of highest temperature reached (Y - axis) against volume of $2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ added ( X - axis)
(ii) From your graph determine the following:-
I Highest temperature
II. Volume of $2 \mathrm{M} \mathrm{NaOH}_{\text {(aq) }}$ needed to neutralize completely $20 \mathrm{~cm}^{3}$ of sulphuric (VI) acid.
(iii) Determine the number of moles of sulphuric (VI) acid used given that the solution contains 1 mole per litre of the acid.
(iv) Calculate the amount of heat evolved in the above reaction. (Take specific heat capacity of the solution to be $4.2 \mathrm{~J} / \mathrm{gK}$ and density of the solution to be $1 \mathrm{~g} / \mathrm{cm}^{3}$ ) (2 marks)
(v) Hence determine the molar heat of neutralization of sulphuric (VI) acid.

2. (a) You are provided with solid F. Cagry out the tests below and record your observations and inferences in the spaces provided.
(i) Place solid F in aboiling tube and add $8 \mathrm{~cm}^{3}$ of distilled water to dissolve the solid.

(ii) To the first portion, add sodium hydroxide solution drop wise until in excess.

| Observations | Inferences |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  | 1mark |

(iii) To the second portion, add aqueous ammonia drop wise until in excess.

| Observations | Inferences |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  | 1mark |

(iv) To the third, portion add few drops of barium chloride solution.

| Observations | Inferences |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  | 1mark |

(v) To the fourth portion, add few drops of dilute nitric (V) acid.

(b) $\partial_{5}^{5}$ You are provided with solution E. Carry out the tests below and record your observations and inferences in th spaces provided.
(i) To the first portion, add a spatula of sodium carbonate provided.

| Observations | Inferences |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
| 1mark |  |

(ii) To the second portion, add few drops of acidified potassium manganate (VII) and warm.

| Observations | Inferences |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  | 1mark |

(iii) Place the third portion on a watch glass and ignite.

| Observations | Inferences |
| :--- | :--- |
|  |  |
|  |  |
| 1mark |  |

