\qquad
\qquad /

Date

PH.YSłGS. \qquad

PAPER 3 (PRACTICAL ${ }^{\text {x }}$)

JULY/AUGUST 2013 ${ }^{5}{ }^{5}$
TIME: $\mathbf{2 1}_{2}^{1 /}{ }_{2}$ OUBS

KIKUYU DISTRICT INTERSCHOOLS EVALUATION
 KENYA CERTIFICATE OF SECONDARY EDUCATION

232/3
PHYSICS
PAPER 3 (PRACTICAL)
TIME: $\mathbf{2}^{1} /{ }_{2}$ HOURS

Instructions to candidates

1. Write your Name, Index Number, school and date in the spaces provided above.
2. Sign and write the date of examination in the spaces provided above.
3. Answer ALL the questions in the spaces provided.
4. All writing MUST be clearly shown in the spaces provided. .

For Examiner's use only

Question	$\mathbf{1}(\mathbf{e})$	$\mathbf{1}(\mathbf{f})$	$\mathbf{1}(\mathbf{g})$	$\mathbf{1}(\mathbf{h})$	2(b)	2 (d)	2(e)	(f)	2	(g)
TOTAL										
Maximum score	6	5	3	6	1	7	5	3	4	$\mathbf{4 0}$
Candidates score										

PART

You are provided with the following:

- A white screen wife cross wires labelled O
8.5
- A lens and avens holder
- A whitescreen labelled S
- A meter rule
- $e^{2 \cdot e^{x^{5}}}$ candle

Proceed das follows:

(a) Set up the apparature as shown in fig. 1
(b) Position the lens so that the object distance $u=20 \mathrm{~cm}$
(c) Adjust the screen S so that a sharp image of the cross wires is formed on the screen S .

Measure the image distance v. Record the value of u and the corresponding value of v in table 1.
(d) Repeat (b) and (c) above for value of $u=20 \mathrm{~cm}, 25 \mathrm{~cm}, 30 \mathrm{~cm}, 35 \mathrm{~cm}, 40 \mathrm{~cm}$ and 45 cm .
(e) Complete table 1.

$u(\mathrm{~cm})$	20	25	30	35	40	45
$\mathrm{v}(\mathrm{cm})$						
$\mathrm{u}+\mathrm{v}(\mathrm{cm})$						
$u v\left(\mathrm{~cm}^{2}\right)$						

Table 1.
(g) Determine the slope of the graph.

PARTB

You are provided with the following

- $\omega^{\left\langle y^{2}\right.}$ A boiling tube

Some dry sand
A liquid in a measuring cylinder labelled L

- Half-meter rule
- \quad A vernier calipers (to be shared)
- A weighing machine (one per room)
- Tissue paper

Proceed as follows:

(h) (i) Measure the length of the boiling tube

$$
\mathrm{h}=
$$

\qquad $\mathrm{cm} \quad(1 / 2$ marks $)$
(ii) Put a little amount of sand in the boiling tube and place it in the measuring cylinder which is almost filled with a liquid labelled L. Add sand, little by little until the tube floats upright as shown in figure 2.

Figure 2

Measure the length, d, of the boiling tube which is above the liquid

(iii) Determine the length, t , of the boiling tube which is immersed in the liquid.

(iv) $-e^{-e^{5}}$ Remove the boiling tube from the measuring cylinder, wipe it dry (on the outside) and weigh its mass, m, including the sand inside.
$\mathrm{m}=$ \qquad cm ($1 / 2$ marks)
(v) Measure the external diameter, D, of the boiling tube.
$\mathrm{D}=$ \qquad cm ($1 / 2$ marks)
(vi) Determine external radius, R .
$R=$ \qquad cm ($1 / 2$ marks)
(vii) Using the formula $\mathrm{m}=\rho x\left(\pi R^{2}\right)$, determine ρ for the liquid.

$$
\rho=
$$

2. You are provided with the following:

- $\quad 2$ dry cells
- A cell holder
- A nichrome wire mounted on a metre rule
- An ammeter, A
- A voltmeter, V
- A jockey J
- A switch S
- 8 connecting wires.

Proceed as follows:

(a) Set up the apparatus as shown in fig. 3 .
(b) With the switch open, record the reading E. of the voltmeter.
\qquad
(c) Place the jockey, J, on the nichrome wire at 100 cm mark. Close the switch, read and record the values of 1 (ammeter reading) and the corresponding values of V (voltmeter reading) in table 2.
(d) Repeat (c) above for length, $\mathrm{L}=70 \mathrm{cn}, 60 \mathrm{~cm}, 50 \mathrm{~cm}, 40 \mathrm{~cm}$ and 20 cm .

Complete table 2.

L(cm)	100	70	60	50	40	20
$1(A)$						
$V(V)$						
$\mathrm{E}-\mathrm{V}(\mathrm{V})$						

Table 2
(e) Plot a graph of ((E-V) (y axis) against I.

(f) Determine the slope of the graph.

(g) \int_{5} Given that $\mathrm{E}=\mathrm{V}+\mathrm{Ir}$, from the graph determine
(i) The internal resistance, r , of the battery. (2 marks)
\qquad
\qquad
\qquad
(ii) V when I is 0.3 A .
\qquad
\qquad
\qquad
\qquad

