Name apastrate con
Name
Index No
SchoolCandidate's SignatureDate:
233/3 CHEMISTRY PRACTICALS Paper 3 July 2013 part Time: 24 Hours LARI DISTRICT MOCK- 2013 Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTION TO CANDIDATES

- Write your name, school and index number in the spaces provided.
- Sign and write the date in the spaces provided.
- Answer **all** the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- All working must be clearly shown.

FOR EXAMINER 5 USE ONE I				
Question	Maximum Score	Candidate's Score		
1	23			
2	8			
3	9			
TOTAL	40			

FOR EXAMINER'S USE ONLY

This paper consists of 8 printed pages. Candidates should check the question paper to ensure that all the Pages are printed as indicated and no questions are missing.

- 1. (I) You are provided with:
 - Solution M containing 3.95g Potassium Manganate (vii), (KMnO₄) per litre of solution.

,85tpapers.com

✓ Solution N, containing 49.0g of ammonium ferrous Sulphate (NH₄)₂SO₄. FeSO₄6H₂O per litre of solution.

You are required to determine the reacting mole ratio of manganate (VII) Ions, MnO_4 with Iron (II) fons $Fe^{2+.}$

CPROCEDURE 1:

Using and pipette filter transfer 25.0cm³ of solution N into a conical flask. Titrate with solution M in the burette. No indicator is required for this experiment. Record your results in the table below.

Repeat the procedure to obtain the accurate volumes.

<u>Table I</u>

FOT NOTE FIEE

	1 st	2 nd	3 rd
Final burette readings cm ³			
Initial burette readings cm ³			
Volume of solution M used cm ³			

(4mks)

- a) Determine the average volume of solution M used. (1mk)
- b) Calculate:
- i) The concentration of solution M in moles per litre. (K = 39, Mn = 55, O = 16) (1mks)

(1 mks)

ii) The number of moles of solution of M in the volume in (a) above. (1 mks)

in the volu is th iv) The number of moles of solution N that reacted with solution M in this experiment (1mks)

> c) Given that 1 mole of solution M gives 1 mole of MnO_4^- ions and 1 mole of solution N gives 1 mole of Fe^{2+} ions. Calculate the reaction mole ratio of Fe^{2+} ions to MnO_4^- ions. (1mks)

(II). You are provided with:

re provided with: ✓ 0.9M of sodium hydroxide solution X

 \checkmark 0.5M of oxalic acid solution Y

You are required to determine the molar heat of neutralization of sodium hydroxide

,85^{tpapers.com}

PROCEDURE II:

Place six test tubes in a test tube rack. Using a 10cm³ measuring cylinder, measure 10cm³ of solution Y and place them into each of the test tubes.

Measure 50 m³ of solution X using a measuring cylinder and place into 200 cm³ beaker. Measure the temperature of solution X in the beaker and record the steady value in table II below. Put the first portion of the 10cm³ of solution Y from the test tube into the beaker containing 50cm³ of solution X. Stir the mixture carefully using a thermometer and record the highest temperature in table II below.

Pour the second portion of solution Y into the mixture in the beaker, stir and record the highest temperature of this mixture in the table II. Continue this procedure using the remaining portions of solution Y to complete table II.

(i) Table II

Total volume of Y added (cm ³)	0	10	20	30	40	50	60
Volume of X (cm^3)							
Temperature (⁰ C)							
							• 、

(4mks)

(ii) On the grid provided, plot a graph of temperature (Y axis) against volume of solution Y added. (3mks)

GRID

(iii) From the graph, find:

(a) The volume of solution Y required to neutralize 50 cm^3 of sodium hydroxide solution X $(\frac{1}{2}mks)$

(b) The highest temperature change (ΔT) $(\frac{1}{2}mk)$

(iv). Calculate the heat change of reaction (Assume density of mixture = $1g/cm^3$ and specific heat capacity= $4.2Jg^{-1}k^{-1}$) (2mks)

(v) Find the number of moles. of sodium hydroxide solution X used

(1mk)

(vit Beast, Page, (vit Beast, Page, (vit Beast, Page, (vit Betermine the molar heat of neutralization of sodium hydroxide, solution X (2mks)

2. You are provided with solid Q. Carry out the test below and record your observations and inferences in the spaces provided.

Place the entire solid in a boiting tube. Add about 10cm³ of distilled water. Shake until all the solid dissolves. Divide the solution into four portions.

To the first portion, add aqueous sodium hydroxide drop wise until in excess. i)

🔶 Observat	ion	Inference	
aper			
at the second se			
Q. Q. T	(1mk)		(1mk)

e ^e	To the second portion, add aqueous an	mmonia drop wise until in excess.
4 ⁴	Observation	Inference
More		
\$ ⁰	(1mk)	(1mk)

iii) To the third portion, add 3 drops of barium nitrate solution.

Observation	Inference
(1mk)	(1mk)

To the fourth portion, add about 2cm³ of lead II nitrate solution iv)

Observation	Inference
(1mk)	(1mk)

- 3. Your are provided with solid Z carry out the tests below and record your observations and inferences in the spaces provided.
 - i) Using a metallic spatula heat half a spatula end-ful of solid Q in a non luminous Bunsen flame for sometime then remove when it ignites.

Observation	Inference

(ii) Put a half spatial end-ful of Z in a boiling tube, add 10cm^3 of distilled water and shake vigorously.

Solution	ion	Inference	
e ^{x⁴}			
Pate			
A.S.	(½mk)		(½mk)

ČĎivide the resulting solution into two portions.

FOT NOTE FIFE

(a) To portion one, dip a piece of universal indicator paper and determine its PH.

Observation	Inference
(1mk)	(1mk)

(b) To portion two add one or two drops of acidified potassium manganate VII solution and shake vigorously.

Observation	Inference
(1mk)	(1mk)

Put half spatula endful of Z into a boiling tube and add 5 drops of ethanol followed by 2 drops of concentrated sulphuric acid. Warm the mixture

Observation	Inference
(1mk)	(1mk)