Name ..

Index Number /

Candidate’s Signature

Date ...

231/2

BIOLOGY

PAPER 2 (THEORY)

JULY/ AUGUST 2013

TIME: 2HOURS

LENOCET EVALUATION TEST
KENYA CERTIFICATE OF SECONDARY EDUCATION

231/2

BIOLOGY

PAPER 2

Instructions to candidates

(a) Write your Name and Index Number in the spaces provided above.
(b) This paper consists of two sections. Section A and Section B. Answer question 6 (compulsory) and either question 7 or 8 in the spaces provided after question 8.

For Examiner’s use only

<table>
<thead>
<tr>
<th>Section</th>
<th>Question</th>
<th>Maximum Score</th>
<th>Candidate’s Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

© 2013 LENOCET
KENYA CERTIFICATE OF SECONDARY EDUCATION
SECTION A (40MARKS)

Answer all the questions in this section in the spaces provided

1. The equation below shows a chemical reaction that takes place in green plants under certain conditions.
 Carbon (iv) oxide + Water \rightarrow Glucose + X

 (a) (i) What is the name of substance X?

 (ii) Other than reagents, state two conditions necessary for this reaction

 (iii) Name two types of cells in which this process occurs.

 (iv) Name the process represented by the equation above.

 (b) Name the features that increase the surface area of the small intestines.

2. (a) What is meant by the term sex-linkage?

 (b) Name two sex-linked traits in humans.

 (c) In Drosophila melanogaster, the inheritance of eye colour is sex-linked. The gene of red eye is dominant. A cross was made between a homozygous red-eyed female and a white eyed male. Work out the phenotypic ratio of F1 generation.

 (Use R to represent the gene for red eyes)
3. (a) (i) Name the structure labelled P and give its role. (2marks)
__
__
__

(ii) Give three features that enables structure labelled X carry out its functions. (3marks)
__
__
__
__

(iii) Name types of blood vessels found in the structure labelled Y. (2marks)
__
__
__
__

(b) State the mode of asexual reproduction in yeast. (1mark)
__
__
__

4. A response exhibited by a certain plant tendril is illustrated below.

(a) (i) Name the type of response. (1mark)
__

(ii) Explain how the response named in (a) (i) above occurs. (3marks)
__
__
__
__
__
__
(b) What is the importance of tactic responses to microscopic plants? (1mark)

__

__

(c) State three applications of plant hormones in agriculture. (3marks)

__

__

__

5. Science club members designed an experiment as shown below. Examine it.

The set up was kept at room temperature for one week.

(a) What was the aim of the experiment? (1mark)

__

__

(b) What observation was made after one week. (2marks)

A __

B __

(c) (i) Explain the role of water in seed germination. (3marks)

__

__

__

__

(ii) Other than water, what two environmental factors are required for seed germination. (2marks)

__

__
SECTION B

Answer question 6 compulsory and either question 7 and 8 in the spaces provided after question 8

6. The following data represents the development in dry mass of germinating seedlings within 18 weeks.

<table>
<thead>
<tr>
<th>Time in weeks</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>10</th>
<th>13</th>
<th>15</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry mass ingrams</td>
<td>0.1</td>
<td>2</td>
<td>3.2</td>
<td>10</td>
<td>18</td>
<td>32</td>
<td>44</td>
<td>45</td>
<td>44</td>
<td>38</td>
</tr>
</tbody>
</table>

(a) Using suitable scales plot a graph of dry mass against time. (6marks)

(b) With reference to the graph, explain the changes in dry mass between;

(i) week 0 to 2 (2marks)
(ii) week 5 to 13 (2marks)
(iii) week 16 - 18 (2marks)

(c) (i) What is the significance of time zero. (1mark)
(ii) What difference will be expected from the above results if the experiment started with two seeds? Give a reason for your answer. (2marks)

(d) (i) Describe how you can carry out the experiment to obtain dry mass in the respective weeks. (4marks)
(ii) State one advantage of using dry mass instead of fresh weight in estimating growth of an organism. (4marks)

7. Describe the adaptations of the skin to its functions. (20marks)

8. (a) Define the term natural selection with reference to evolution. (2marks)
(b) Describe how natural selection brings about adaptation of species to its environment. (18marks)