| Name             | Index Number       |
|------------------|--------------------|
|                  | agas <sup>XV</sup> |
| SCHOOL           | Index Number       |
| 233/1 CHEMISTRY  | Date<br>           |
| PAPER 1 (THEORY) |                    |
| JULY/AUGUST 2013 |                    |
| TIME: 2HOURS     |                    |

LENOCET EVALUATION TEST
KENYA CERTIFICATE OF SECONDARY EDUCATION

233/1

**CHEMISTRY** 

PAPER 1 (THEORY)

TIME: 2HOURS

## **Instructions to candidates**

- 1. Write your name and Index Number in the space provided above.
- 2. Answer **ALL** questions in the spaces provided in the question paper.
- 3. Mathematical tables and electronic calculators may be used.
- 4. **ALL** working **must** be clearly shown where necessary.

## For Examiner's use only

| Questions | Maximum Score | Candidate's |
|-----------|---------------|-------------|
| Score     |               |             |
| 1 - 30    | 80            |             |

(atomic number 12).

 $(\frac{1}{2} \text{ marks})$ Calcium

(1/2 marks)Magnesium

Why is calcium more reactive than magnesium? (b)

(2 marks)

Study the scheme below and answer the questions that follow.



Name:

The reagents used in process R. (1 mark) (i)

(1 mark) (ii) Process S

Compound Q. (1 mark) (iii)

$$(Na = 23, O = 16, C = 12, H_{2}^{2})$$
 (3 marks)

Past Pagers vitai

**1.** (a) Give the name and formula of one chief ore of aluminium metal.

(1 mark)

(b) Aluminium metal is extracted through electrolysis process. Write the equation of the reaction at the cathode during the process.

(1 mark)

(c) Why is it not advisable to store Sodium hydroxide solution in an aluminium container.

(1 mark)

(2 marks)

\_\_\_\_\_

**5.** Below are cross - sections of two pieces coated with zinc and copper respectively.



Which piece would rust when the holes were filled with water and left for sometimes?

Explain.

housisten, Danou 1



$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}_{(\operatorname{aq})} + 2\operatorname{OH}_{(\operatorname{aq})} \stackrel{\checkmark}{\longleftarrow} 2\operatorname{Cr}\operatorname{O}_{4}^{2-}_{(\operatorname{aq})} + \operatorname{H}_{2}\operatorname{O}_{(\operatorname{I})}$$
(orange) (Yellow)

(1 mark)

- Control of the cont

(b) State and explain the observation that would be made if a few pellets of sodium hydroxide are added to the equilibrium mixture.

(2 marks)

\_\_\_\_\_

7. The scheme below show the industrial preparation of nitric acid.



- (a) What is the oxidation state of nitrogen in;
  - (i)  $NH_3$  (1/2 marks)
  - (ii)  $HNO_3$   $(\frac{1}{2} marks)$
- (b) Write a balanced chemical equation for the reaction taking place in.
  - (i) Chamber I (1 mark)

(ii) Chamber II (1 mark)

The diagram below represents an experiment which was carried out by a student to 8. investigate the effect of passing an electric current on molten sodium chloride.



| Graphite electrode Beaker Molten sodium chloride  (i) Molten Sodium chloride is a binary electrolyte. State the meaning of the term binary electrolyte. | (1 mark)                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii) State the observations made at the anode.                                                                                                          | (1 mark)                                                                                                                                                                             |
| (iii)Write an equation to show what happens at the cathode.                                                                                             | (1 mark)                                                                                                                                                                             |
|                                                                                                                                                         | Beaker Molten sodium chloride  (i) Molten Sodium chloride is a binary electrolyte. State the meaning of the term binary electrolyte.  (ii) State the observations made at the anode. |

9. Briefly explain how you would obtain a pure sample of lead chloride from a

| (3 marks)      |
|----------------|
| _              |
| _              |
| _              |
| _              |
| _              |
| <del>_</del> , |
|                |

A given volume of Ozone  $(O_3)$  diffused from a certain apparatus in 96 seconds. **10.** Calculate the time taken by an equal volume of carbon (IV) Oxide (CO<sub>2</sub>) to diffuse under the same conditions

(O = 16, C = 12)

(3 marks)

The diagram below shows a structure of water molecules. For More Eree



(i) Name the bonds labelled a and b.

(1 mark)

(ii) Using dots (•) and cross (x) diagram, show the bonding in the compound phosphonium ion  $PH_{4}^{+}$ . (H = 1, P = 15) (2 marks)

**12.** Study the information in the table below and answer the questions that follow.

(The letters do not represent the actual symbols of the elements).

| Substance | Melting<br>point (°C) | Boiling<br>point (°C) | Solubility<br>in water | Dendity of room temperature g/cm <sup>3</sup> |
|-----------|-----------------------|-----------------------|------------------------|-----------------------------------------------|
| Н         | -117                  | 78.5                  | Very soluble           | 0.8                                           |
| J         | -78                   | -33                   | Very Soluble           | 0.77 x 10 <sup>-3</sup>                       |
| K         | -23                   | 77                    | Insoluble              | 1.6                                           |
| L         | -219                  | -183                  | Slightly Soluble       | 1.33 x 10 <sup>-3</sup>                       |

|      |           | (i)     | Which substance would dissolve in water and would be separated from                   |         |            |
|------|-----------|---------|---------------------------------------------------------------------------------------|---------|------------|
|      |           |         | the solution by fractional distillation? Give a reason.                               |         | (1 mark)   |
|      |           |         | eèt <sup>c</sup>                                                                      |         | -          |
|      |           |         |                                                                                       |         | -          |
|      |           | (ii)    | Which substance is a liquid at room temperature and when mixed with water,            |         |            |
|      |           |         | two layers would be formed.                                                           |         | (1 mark)   |
|      |           |         |                                                                                       |         | -          |
|      |           |         |                                                                                       |         |            |
|      |           | (iii) V | Which letter represents a substance that is a gas at room temperature and             |         |            |
|      | 0<br>0    | CX      | ich can be collected over water. Explain                                              | (1 mark | <b>(</b> ) |
| 0    | \$ \$ 5 C |         |                                                                                       |         | -          |
| 402  | \$ ree    |         |                                                                                       |         | -          |
| \$0° | 13.       | 3.4g    | of an element X on complete combustion produced heat which raised the                 |         |            |
|      |           | temp    | erature of 120cm <sup>3</sup> of water from 22°C to 62°C. Determine the molar heat of |         |            |
|      |           | comb    | oustion of X. (Atomic mass of X = 34. Density of $H_2O = 1g/cm^3$                     |         |            |
|      |           | (spec   | ific heat capacity of water = $4.2J/gk^{-1}$ )                                        |         | (3 marks)  |
|      |           |         |                                                                                       |         | -          |
|      |           |         |                                                                                       |         | -          |
|      |           |         |                                                                                       |         | -          |
|      |           |         |                                                                                       |         | -          |
|      |           |         |                                                                                       |         | -          |
|      |           |         |                                                                                       |         | -          |
|      | 14.       | (a)     | The column below was used to soften hard water                                        |         |            |

14.



|                         |            | z. com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                         | (i)        | Explain how the hard water was softened as it passed through the column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nn. (1 marl |
|                         |            | est contraction of the contracti |             |
|                         | (ii)       | After sometimes, the material in the column is not able to soften                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                         |            | hard water. How can the material be re - activated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1 marl     |
| (b)                     | Give o     | one advantage of using hard water for domestic purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1 mark)    |
| 105% S                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,         |
| (b)                     | experim    | ent, the quantity of electricity passed to deposit 1.2 grammes of metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                         |            | t was $3860$ Coulombs. (RAM of Q = 120, 1 Faraday = $96500$ Coulom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nbs)        |
| (a)                     | How        | many Faradays of electricity are required to deposit 1 mole of Q?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2 marks)   |
|                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| (b)                     | One o      | of the ions present in the solutions of salt Q has the formula $Q^{y+}$ . What is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne          |
|                         | nume       | rical value of Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1 mar)     |
| The                     | set - up b | elow was used to investigate the effect of dry hydrogen gas on hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| Cop                     | per (II) O | exide powder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|                         |            | Copper (II) oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                         |            | Excess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Dry                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Dry<br>H <sub>2(g</sub> | in         | $H_{2(g)}$ Burning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                         | in         | ↑ ↑  Anhydrous Cobalt (II) chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| $H_{2(g)}$              |            | <u>↑</u> ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3 marks)   |
| $H_{2(g)}$              |            | Anhydrous Cobalt (II) chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3 marks)   |
| $H_{2(g)}$              |            | Anhydrous Cobalt (II) chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3 marks)   |
| $H_{2(g)}$              |            | Anhydrous Cobalt (II) chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3 marks)   |

The table below gives the energy required to remove the outermost electrons **17.** for some group I elements.

|                             |     |                  | <u> </u> |     |
|-----------------------------|-----|------------------|----------|-----|
| Element                     | A   | <b>B</b>         | С        | D   |
| Energy KJ mol <sup>-1</sup> | 494 | <sup>4</sup> 418 | 519      | 376 |

Arrange the elements in the order of their reactivity starting with least reactive. (2 marks)

A polymer has the following structure. 18.



Draw the structural formula of the monomer. (1 mark) (a)

Determine the number of monomers in the polymer. (b)

$$(C = 12, H = 1, Br = 80)$$
 (2 marks)

**19.** The table below gives the rate of decay for the radioactive element P.

| Number of hours | mass (g) |
|-----------------|----------|
| 0               | 384      |
| 270             | 48       |

|       |                  | *¿E                                                                                                                                         |        |
|-------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|
|       |                  | - Klary .                                                                                                                                   |        |
|       | . 6              | ×                                                                                                                                           |        |
|       | 72               |                                                                                                                                             |        |
| (b) W | rite a balanced  | equation for the decay of $\frac{238}{92}$ U after it loses 2 - particles                                                                   |        |
| an    | 3x∝ - particles  | equation for the decay of ${}^{238}_{92}$ U after it loses 2 - particles to form a stable nuclide ${}^a_b$ X where a and b are whole number | rs. (1 |
| , Sy  |                  |                                                                                                                                             |        |
|       |                  |                                                                                                                                             |        |
|       |                  |                                                                                                                                             |        |
|       |                  | ives PH values of solutions P, Q and R.                                                                                                     |        |
|       | Solution         | PH                                                                                                                                          |        |
|       | <u>P</u>         | 13.6                                                                                                                                        |        |
|       | Q                | 6.9                                                                                                                                         |        |
|       | R                | 1.3                                                                                                                                         |        |
| (i)   | Which solution   | on will produce Carbon (IV) Oxide when reacted with marble chips                                                                            | s. (1  |
| (ii)  | What would l     | be the colour of solution P after adding a few drops of                                                                                     |        |
|       | phenolphthale    | ein.                                                                                                                                        | (1     |
|       | ahla halayy shay | yes the colubility of a selt at year over town ourst year                                                                                   |        |
| That  | emperature       | ws the solubility of a salt at various temperatures.  Solubility (g/100g water)                                                             |        |
|       |                  | 39                                                                                                                                          |        |
|       | 0                | 33                                                                                                                                          |        |
|       | 0<br>40          | 27                                                                                                                                          |        |
|       |                  |                                                                                                                                             |        |
|       | 40               | 22                                                                                                                                          |        |
|       | 40<br>80<br>110  |                                                                                                                                             | C? (2  |
|       | 40<br>80<br>110  | 22                                                                                                                                          | C? (2  |

| 22. |        | uric acid is manufactured in large scale by the contact process. The basic reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     | in the | contact process is the catalytic exidation of Sulphur (IV) Oxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|     | (a)    | Name the catalyst used extension and the catalyst used extensi | (1 mark) |
|     | (b)    | Write the equation for the reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1 n     |
|     | (c)    | State one large scale use of sulphuric acid.  State one large scale use of sulphuric acid.  Solution of the reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1 n     |
| 3.  | The fo | llowing two tests were carried out on chlorine water contained in two test tubes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|     | (a)    | A piece of blue flower was dropped into the first test tube. Explain why the flow was bleached.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ver (2 n |
|     | (b)    | The second test tube was corked and exposed to sunlight. After a few days, it was found to contain a gas that rekindled a glowing splint. Write an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|     |        | equation for the reaction which produced the gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1 n     |
| 4.  |        | the how a solid sample of lead (II) chloride can be prepared using the following ats. Dilute nitric acid, dilute hydrochloric acid and lead carbonate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3 mark) |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |





**26.** Ammonia can be converted to nitrogen (I) oxide as shown in the equation below.

$$4 \text{ NH}_{3(g)} + 5O_{2(g)} = 4NO_{(g)} + 6H_2O_{(l)}$$

The energy level diagram for the above reaction is as shown below.



(a) Explain how an increase in temperature would affect the yield of nitrogen (I) oxide. (2 marks)

\_\_\_\_

(b) On the diagram, sketch the energy level diagram that would be obtained if the reaction is carried out in presence of a catalyst. (1 mark)

26. For more free

Cl. i D

12





|     | $\sim$                                                                    |          |
|-----|---------------------------------------------------------------------------|----------|
| (a) | Write the electronic arrangement for the ions formed by elements Q and S. | (1 mark) |
| (4) | with the diedicine arrangement for the forms formed by crements & and b.  | (1 mark) |

## 28. Use the information below to answer the questions that follow.

$$E^{\Theta}$$
 Volts

$$Zn^{^{2+}}{}_{(aq)} \; + \; 2e^{\text{-}} \; \overline{\hspace{1cm}} \hspace{1cm} Zn_{(s)} \hspace{1cm} \text{-} \; 0.76$$

$$Fe^{2+}_{(aq)} + 2e^{-} \longrightarrow Fe_{(s)} - 0.44$$

Calculate the  $E^{\Theta}$  value for the electrochemical cell represented below. (1 mark)

$$Al_{(s)} \left| Al^{3+}_{(aq)} \right| \left| Fe^{2+}_{(aq)} \right| \left| Fe_{(s)} \right|$$





| (a) | Write the equation for the reaction which takes place. | (1 mark) |
|-----|--------------------------------------------------------|----------|
|-----|--------------------------------------------------------|----------|

Q<sup>a</sup>

Name one use of carbon (II) oxide which is also a use of hydrogen gas. (1mark)

**30.** The simplified flow chart below shows some of the steps in the manufacture of sodium carbonate by the solvay process.



(a) Identify substance L.  $(\frac{1}{2} \text{ marks})$ 

(b) Name the process taking place to step II.  $(\frac{1}{2} \text{ marks})$ 

(c) Write an equation for the process which takes place in step III. (1 mark)

Chamiatan Dan an 1