	.6	on
Name		Index Number /
School		Candidate's Signature
	are exc	Date
232/3 PHYSIC	CS 3 (PRACTICAE)	
PAPER	3 (PRACTICAL)	
TIME:	AUGUST 2013 2 ¹ /2HQURS	
oree 4CS	e ^{26⁵} LENOCET EVAL	UATION TEST
+CS*	KENYA CERTIFICATE OF S	ECONDARY EDUCATION
er ee		
₹ ^{0²} PHYSIC PAPER		
N ^O PHYSIC		
	3 (PRACTICAL)	

Index Number /
Candidate's Signature
Date

PAPER 3 (PRACTICAL)

TIME: 2¹/,HOURS

Instructions to candidates

- 1. Write your Name and Index Number in the spaces provided above.
- 2. Sign and write the date of examination in the spaces provided above.
- 3. Answer ALL the questions in the spaces provided in the question paper.
- 4. You are supposed to spend the first 15 minutes of the $2^{1/2}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- 5. Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- 6. Candidates are advised to record their observations as soon as they are made.
- 7. Mathematical tables and recommended electronic calculators may be used.
- 8. This paper consists of 6 printed pages.

For Examiner's use only

Question 1

	а	b	c	d
Maximum Score	7	5	5	3
Candidate's Score				

Question 2

	а	b	с	d	e	f
Maximum Score	2	2	6	2	2	6
Candidate's Score						

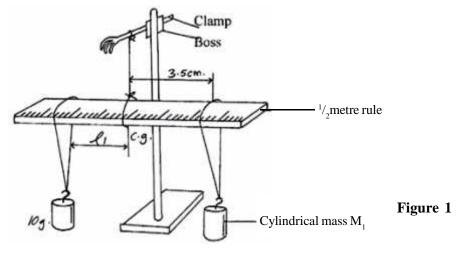
Total

Total

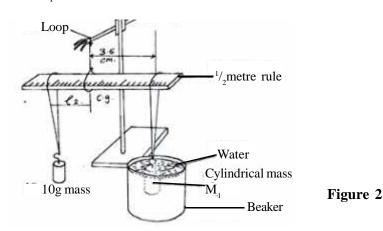
Question 1.

You are provided with the following

- One half meter rule.
- One retort stand.
- A boss and a clamp. •
- One 10g mass. •
- . Freekceepastpapers. com Six cylindrical masses with hooks labelled M_1, M_2, M_3, M_4, M_5 and M_6 . •
- One 100ml measuring cylinder. •
- Three pieces of cotton thread. •
- One 400ml beaker. •


(a)S

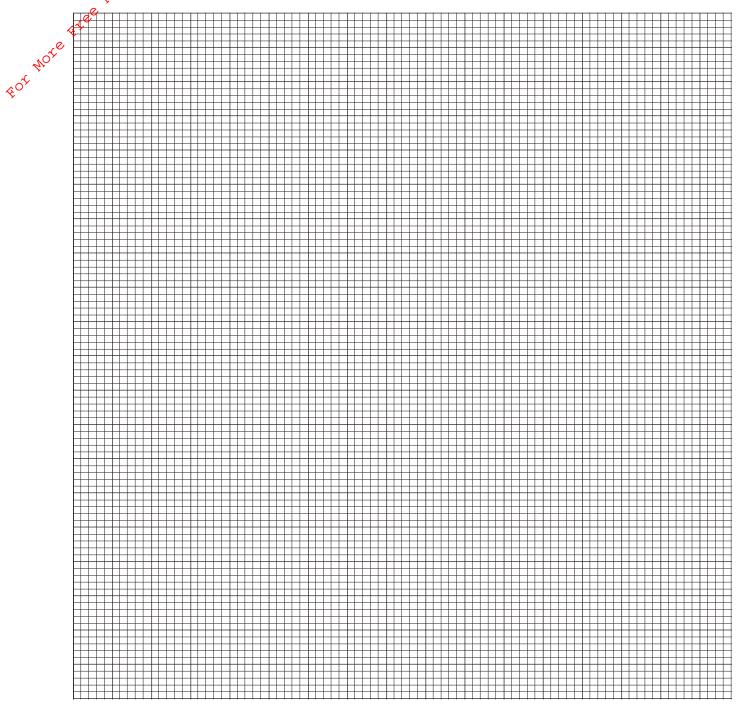
FOT NOTE FIFEE


Water in a 500ml beaker.

25× Proceed as follow.

- (i) Suspend the half metre rule on the clamp using one of the pieces of thread. Balance the ruler and note the position of its centre of gravity. *This point of* suspension should be maintained throughout the experiment:
- (ii) Suspend the cylindrical mass M₁ at a distance of 3.5cm from the center of gravity of the ruler using a looped thread. suspend the 10g mass to balance the mass. (See figure 1). Record in table 1, L_1 , the distance between the centre of gravity of the rule and the balance point for the 10g mass.

(iii) Suspend M₁ in water contained in the 400ml beaker. Adjust the position of the 10g mass to balance M_1 (see figure 2). Record the distance L_2 , the distance between the centre of gravity of the rule and the balance point of the 10g mass when M_1 is suspended in water.

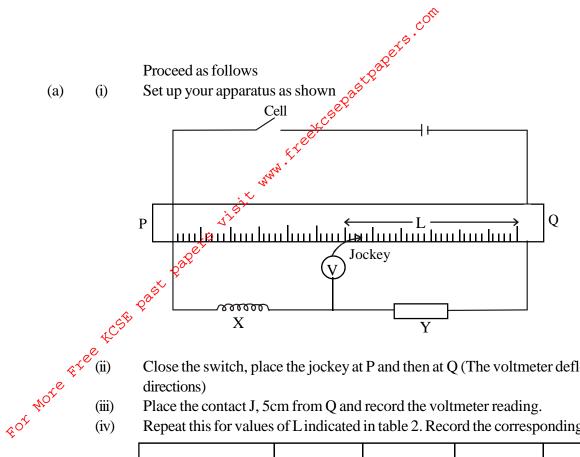

Remove M_1 with the loop of thread and determine its volume using the 100ml measuring cylinder. Pocorr this volume. Wint that (iv) 100ml measuring cylinder. Record this volume, V in table 1.

	M	M ₂	M ₃	M ₄	M ₅	M ₆	
Vol. V (cm ³)	e'reet						
L ₁ (cm)	. •						
L ₂ (cm)							Table 1
$(L_1 - L_2)$ cm)							

On ⁴¹ Repeat the procedure a(ii) to a(iv) for the other cylindrical masses and

(7 marks)

On the grid provided, plot the graph of volume (y - axis) against $(L_1 - L_2)$ (5 marks)


(i)	Determine the slope of the graph.	(2 marks)
(ii)	Given that the equation of the graph is: $V = \frac{21}{5k} L_1 - L_3$ Where let's a constant, determine the value of k.	(3 marks)
FOT NOTE FILE (d)	Design a set up and use it to determine the mass of the half metre rule using the l0g cylindrical mass. Draw the setup and show your working.	(3 marks)

Question 2.

<u>PartA</u>

You are provided with;-

- A nichrome wire, 1m long, mounted on mm scale and labelled PQ at the ends.
- A nichrome wire of length 15cm labelled X
- A 10 ohm resistor labelled Y
- A dry cell (New)
- A switch
- A voltmeter (0-2.5V) and
- 8 connecting wires (4 with crocodile clips)

- Close the switch, place the jockey at P and then at Q (The voltmeter deflects in opposite directions)
- (iii) Place the contact J, 5cm from Q and record the voltmeter reading.
- (iv) Repeat this for values of L indicated in table 2. Record the corresponding values of V.

Length (cm)	5	15	25	35	45
V (volts)					

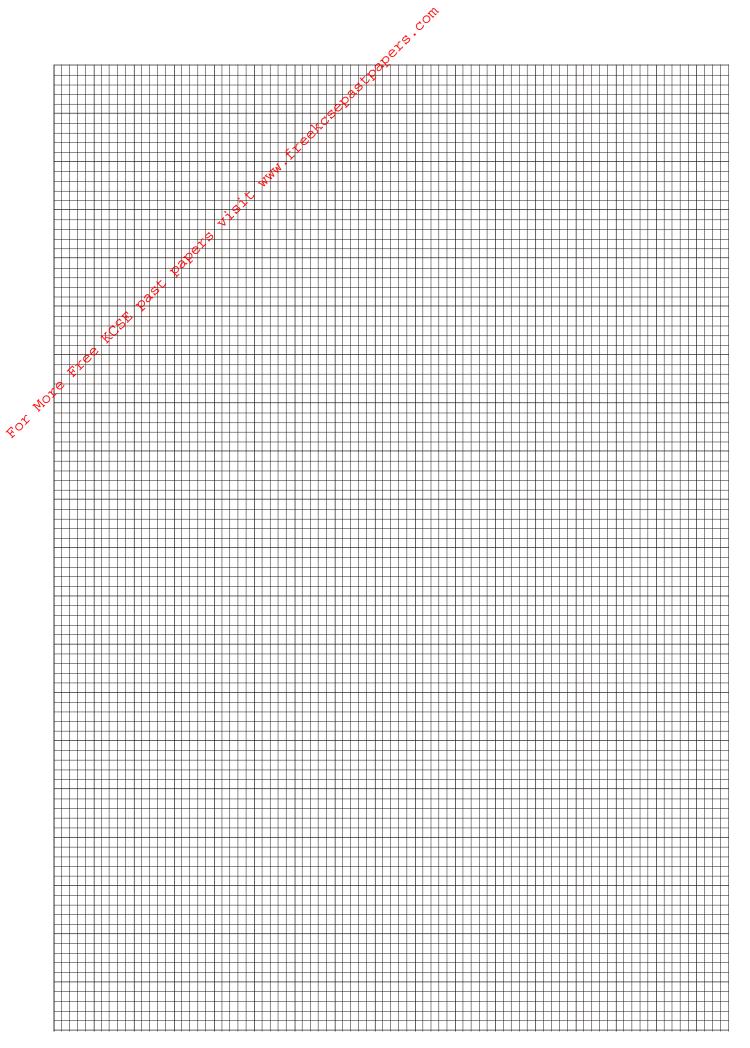
Table 2 (2 marks)

Interchange the voltmeter terminals. Place jockey at P and make sure the voltmeter (b) (i) pointer deflects to the right.

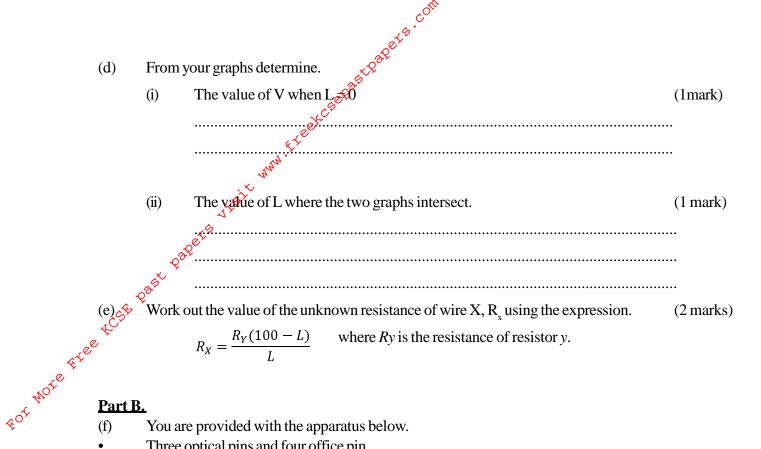
Place the jockey on the wire 95cm from Q and record the voltmeter reading. (ii)

Repeat this for values of L given in the table 3. (iii)

Length (cm)	95	90	85	80	75
V (volts)					

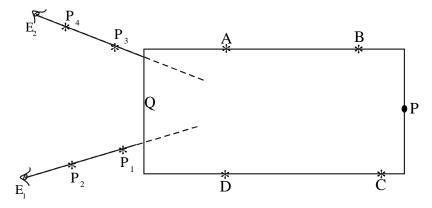

Table 3

On the same axes plot two graphs of V(y - axis) against L using the values in table 1 (c) and table 2


(6 marks)

(2 marks)

(ii)


Dhusing Daman 2

Part B.

- You are provided with the apparatus below. (f)
- Three optical pins and four office pin •
- A plain white A4 piece of paper •
- Soft board
- Class slab

Place the glass slab on the white piece of paper and trace its outline. Secure it in place (In its position) by the office pins A, B, C, D as shown in the diagram below.

(g) (i) Fix the pin P firmly at the end of the slab and with your eye E_1 at the opposite of the slab fix pin P_1 and then P_2 in line with the image I of the pin (see diagram) (1 mark)

Remove the pins P_1 and P_2 and mark their positions P_1 and P_2 respectively. (ii) Similarly fix P_3 and then P_4 so that they are in line with the image I of P. (1 mark)

Again remove the pins P_3 and P_4 and mark their positions respectively. Remove the glass slab and pins ABCD.

	COTT	
	perts.	
(h) Join	P_1P_2 produced with the tracing of the slab outline. Join P_3P_4 produced to intersect	
line	P_1P_2 . el this point of intersection I, the supposed position of the image of pin P.	
Labe		(1 mark)
(i)	Measure the lengths OP and OI	
	QP	(1 mark)
	QI	(1 mark)
	and a second	
(ii) For Note Free KCSE past	⁹ Determine the ratio QP/QI.	(1 mark)
one ^x		
CSE *		
e e		
St.		
MOL		
\$ ^{0^f}		