INSTRUCTIONS TO CANDIDATES:
• Write your Name and Index number and School in the spaces provided above.
• Sign and write the date of examination in the spaces provided above.
• Answer ALL the questions in the spaces provided in the question paper.
• All working must be shown clearly where necessary.
• Mathematical tables and silent electronic calculators may be used.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Maximum Score</th>
<th>Candidate’s Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 27</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
1. Two papers A and B were placed at different levels of a non-luminous flame. Paper A was placed at the lowest part of the flame while B was placed at the tip.

(a) Indicate below the observations made on each paper. (2 marks)

(b) Explain the observations made on paper A. (1 mark)

__
__
__

2. The diagram below shows a set-up used by a student to separate two liquids C and D.

(a) Name the apparatus drawn. (1 mark)

__

(b) Explain why it is possible to separate C and D using the apparatus shown. (2 marks)

__
__
__

3. The pH values of some solutions labeled E to I are given in the table below. Use the information to answer the questions that follow.

<table>
<thead>
<tr>
<th>pH</th>
<th>14.0</th>
<th>1.0</th>
<th>8.0</th>
<th>6.5</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

(a) Identify the solution with the highest concentration of hydroxide ions. Give a reason for your answer. (2 marks)

__
__
__
(b) Which solution can be used as a remedy for acid indigestion in the stomach? (1 mark)

__

(c) Which solution would react most vigorously with magnesium metal? (1 mark)

__

4. The diagram below represents part of a set-up for preparing and collecting a dry sample of oxygen gas.

(a) Complete the diagram. (2 marks)

(b) Write the equation for the reaction in tube I. (1 mark)

(c) State one commercial use of oxygen gas. (1 mark)

__

__

__

5. The diagram below represents an arrangement for preparing and collecting dry hydrogen. Study it and answer the questions that follow.

__

__

__
(a) Write the equation for the reaction that produces hydrogen gas. (1 mark)

(b) Name a suitable substance that liquid K is likely to be. (1 mark)

(c) Explain why it is not advisable to use nitric (V) acid as an alternative to hydrochloric acid in this preparation experiment. (1 mark)

6. Study the table and answer the questions that follow. The letters are not actual symbols of the elements or ion.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Number of</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protons</td>
<td>Electrons</td>
<td>Neutrons</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>18</td>
<td>18</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>19</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

With reasons, choose the letters that represent
(a) A cation. (1 mark)

(b) An anion. (1 mark)

(c) A pair of isotopes. (1 mark)

7. (a) The diagram below shows the structure of solid iodine.
(i) Name the types of bond(s) in the solid. (1 mark)

(ii) Explain why iodine has a very low melting point. (1 mark)

(b) Explain why graphite is a better lubricant than oil. (1 mark)

8. Explain the following observations.
(a) A beaker with lime water, when left exposed develops a layer of a white solid on the surface. (1 mark)

(b) Calcium chloride powder, when left exposed gradually turn into a colourless solution. (1 mark)

9. The diagram below shows a set-up intended for the electrolysis of molten lead (II) bromide.

(a) Label on the diagram: (i) anode (½ mark) (ii) cathode (½ mark)

(b) Indicate on the diagram the direction of flow of electrons. (1 mark)
(c) State the observations made at the
 (i) anode __ (½ mark)
 (ii) cathode ___ (½ mark)

10. The diagram below shows an experimental set-up for preparing carbon (II) oxide. Study it and answer the questions that follow.

 ![Diagram of experimental set-up for preparing carbon (II) oxide]

 (a) State the role of sodium hydroxide solution in the set-up. (1 mark)
 __
 __
 __

 (b) State the reason why carbon (II) oxide is collected in the manner indicated. (1 mark)
 __
 __
 __
 __

 (c) Describe a simple test that can be used to distinguish between carbon (II) oxide and carbon (IV) oxide. (1 mark)
 __
 __
 __

11. When 3.1g of a metal carbonate RCO₃ were heated, a constant mass of 2.0g of the metal oxide were formed. On reduction with coke the same oxide yielded 1.6g of pure metal. Calculate the relative atomic mass of metal R (O = 16.0). (3 marks)
12. Study the flow chart below.

```
<table>
<thead>
<tr>
<th>Alcohol S</th>
<th>Process I</th>
<th>Propene</th>
<th>Acidified</th>
<th>Compound T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc. H₂SO₄</td>
<td></td>
<td>KmnO₄</td>
<td></td>
</tr>
</tbody>
</table>
```

(a) Write the structural formula of alcohol S. (1 mark)

(b) Name (i) compound T ___________________________ (1 mark)

(ii) process I ___________________________ (1 mark)

13. Study the diagram below:

(a) Give the most likely identity of metal U. (1 mark)

__

(b) State two observations made in the conical flask. (2 marks)

__

__

__

14. Study the diagram below.
(a) State the role of manganese (IV) oxide in the set-up shown above. (1 mark)

(b) State and explain the observation made in tube II. (2 marks)

15. Study the flow chart below and answer the questions that follow.

Conc. H₂SO₄(l) → Gas V → Ammonia → White solid W
Sodium chloride

(a) Name (i) Gas V ___ (1 mark)
(ii) Solid W ___ (1 mark)

16. In an experiment, soap solution was added to three separate samples of water. The table below shows the volumes of soap solution added in order to form lather with 1000 cm³ of each sample before and after boiling.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample I</th>
<th>Sample II</th>
<th>Sample III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of soap added to unboiled sample (cm³)</td>
<td>27.0</td>
<td>3.0</td>
<td>10.6</td>
</tr>
<tr>
<td>Volume of soap added after boiling sample (cm³)</td>
<td>27.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

(a) Identify the sample that was likely to be soft water. Explain. (1 mark)

(b) Explain the change in the volume of soap solution in sample III. (1 mark)

(c) Give one disadvantage of hard water. (1 mark)
17. (a) When 8.0g of ammonium nitrate was dissolved in 100cm³ at the temperature of the solution was 14°C. Given that the temperature of the water was initially 20°C, calculate the molar enthalpy of solution of ammonium nitrate. (N = 14.0, H = 1.0, O = 16.0) C = 4.2Jg⁻¹K⁻¹. (2 marks)

(b) Draw an energy level diagram for this process. (1 mark)

18. In an experiment to monitor the rate of reaction of magnesium and hydrochloric acid a student recorded the volume of hydrogen produced at regular time intervals and obtained the graph shown below.

![Graph showing volume of hydrogen produced over time](image)

(a) On the same set of axes sketch the curve expected if the experiment is repeated with a few crystals of copper (II) sulphate added to the reactants. (1 mark)

(b) Explain the shape of your curve. (1 mark)
19. A current of 4A was passed through dilute sulphuric (VI) acid for 13h 24min and 10sec. Calculate the volume of oxygen gas produced at the anode. (IF = 96500C, molar gas volume = 24.0c/m³). (3 marks)

20. (a) Write the formula of the chief ore (bauxite) from which aluminium is extracted. (1 mark)

(b) Explain the role of molten cryolite in aluminium smelting. (1 mark)

(c) Aluminium does not apparently react with dilute nitric acid. Explain. (1 mark)

21. (a) Determine the values of χ and y in the nuclear equation shown below. (1 mark)

\[
\frac{235}{92}U + \frac{1}{0}n \rightarrow \frac{141}{56}Ba + \frac{\chi}{y}Kr + \frac{3}{0}n
\]

χ ______________________ y ______________________

(b) State one application of this type of reaction. (1 mark)

(c) State one danger associated with exposure of human beings to radioactive substances. (1 mark)
22. The grid below is a section of the periodic table. Study it and answer the questions that follow. The letters do not represent actual symbols.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

(a) State the name given to the family of B and E. (1 mark)

(b) Identify the most reactive metal. (1 mark)

(c) State the type of bond that exists in the compound of elements B and D. (1 mark)

23. The reversible reaction represented below is for the equilibrium established in the reaction of hydrogen and iodine.

\[H_2(g) + I_2(g) \rightleftharpoons 2HI(g), \Delta H = -10 \text{KJmol}^{-1} \]

(a) State and explain the effect on the equilibrium of decreasing the pressure. (2 marks)

(b) Of lowering the temperature. (2 marks)

24. The scheme below shows a series of reactions.

Aqueous solution of green solid G

Add dilute nitric (V) acid and aqueous barium nitrate

White precipitate

Filter

White precipitate

Add aqueous sodium hydroxide

Green precipitate K

\[+ H_2O_2 \rightarrow \text{Brown solid J} \]

Identify the following:
(a) White solid H (1 mark)
25. (a) State Graham’s law. (1 mark)

(b) Green precipitate K __ (1 mark)

(c) Brown solid J ___ (1 mark)

(d) Green solid G ___ (1 mark)

26. Two gases L and M have relative densities 1.98 and 2.90 respectively. They diffuse under similar conditions. If the relative molecular mass of M is 64, determine the relative molecular mass of L. (2 marks)

When concentrated sulphuric (VI) acid reacts with hydrogen bromide gas the following reaction takes place.

$$2\text{HBr}(g) + \text{H}_2\text{SO}_4(\text{l}) \rightarrow \text{Br}_2(g) + \text{SO}_2(g) + 2\text{H}_2\text{O}(g)$$

(a) State the observation made during the reaction. (1 mark)

(b) Give the property of concentrated sulphuric (VI) acid demonstrated in the reaction. (1 mark)

27. (a) Name the apparatus shown below. (1 mark)

(b) State one safety measure to be taken while using the apparatus shown. (1 mark)

(c) State the use of this apparatus in the laboratory. (1 mark)