| NAME   | χ <sup>©</sup>                         | INDEX NO                |
|--------|----------------------------------------|-------------------------|
|        | . 2 <sup>Q</sup>                       |                         |
| SCHOOL | ······································ | . CANDIDATE'S SIGNATURE |
|        | e Dar                                  |                         |
|        | , Co                                   | DATE                    |

232/2
PHYSICS
(THEORY)
PAPER 2
JULY/AUGUST 2013
TIME: 2 HOURS

KIHARU/KAHURO DISTRICT JOINT EXAMINATION – 2013

Kenya Certificate of Secondary Education

PHYSICS PAPER 2 (THEORY)

**TIME: 2 HOURS** 

## **INSTRUCTIONS TO CANDIDATES:**

- (a) Write your **Name** and **Index Number** in the spaces provided **above**.
- (b) **Sign** and write the **date** of examination in the spaces provided **above**.
- (c) This paper consists of **two** Sections; **A** and **B**.
- (d) Answer **ALL** the questions in Sections **A** and **B** in the spaces provided.
- (e) All workings must be clearly shown.
- (f) Non-programmable silent electronic calculators and KNEC Mathematical tables and **may be** used.
- (h) Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

## FOR EXAMINER'S USE ONLY:

| Section | Question    | Maximum<br>Score | Candidate's<br>Score |
|---------|-------------|------------------|----------------------|
| A       | 1 – 10      | 25               |                      |
|         | 11          | 12               |                      |
|         | 12          | 14               |                      |
| В       | 13          | 9                |                      |
|         | 14          | 12               |                      |
|         | 15          | 8                |                      |
| Total   | Total Score |                  |                      |

Physics Paper 2 Turnover

Answer all questions in this section in the spaces provided:

1. State the property of light suggested by the formation of shadows.

(1 mark)

2. The figure **below** shows a sharp pin fixed on a cap of leaf electroscope. The electroscope is highly charged and then left for sometime.



Explain why the leaf collapses.

(2 marks)

3. The figure **below** shows an object O placed infront of a plane mirror.



On the same diagram, draw rays to locate the position of the image I as seen from the eye E. (2 marks)

4. (a) State the basic law of magnetism.

(1 mark)

|     |                               | <i>a</i> •      |                 |                 |          |
|-----|-------------------------------|-----------------|-----------------|-----------------|----------|
| (b) | The figure <b>below</b> shows | how magnets are | stored in pairs | with keeners at | the ends |
| (U) | The figure below shows        | now magnets/arc | stored in pairs | with keepers at | inc chas |

Explain how this method of storing helps in retaining magnetism longer.

(2 marks)

Paleirs

(1 mark)

6. The chart **below** shows an arrangement of different parts of the electromagnetic spectrum.

| Radio A Infrared | Visible | В | X-Rays | Gamma Rays |
|------------------|---------|---|--------|------------|
|------------------|---------|---|--------|------------|

(i) Name the radiation represented by **B**.

(1 mark)

(ii) Name a device that can be used to detect radiation **A**.

(1 mark)

7. (a) Distinguish between a transverse and a longitudinal wave.

(1 mark)

(b) Determine the frequency of the wave shown below.

(2 marks)



|         | (c)    | State one reason why ultrasound is preferred to audible sound in echo-sounding.                                            | (1 mark)                    |
|---------|--------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| te Etel |        |                                                                                                                            |                             |
| 8.      | An ele | ectric heater rated 240V, 3000W is to be connected to a 240V mains supply, throughine whether the fuse is suitable or not. | gh a 10A fuse.<br>(3 marks) |
|         |        |                                                                                                                            |                             |
|         |        |                                                                                                                            |                             |
|         |        |                                                                                                                            |                             |
| 9.      | (a)    | What are extrinsic semi-conductors.                                                                                        | (2 marks)                   |
|         |        |                                                                                                                            |                             |
|         |        |                                                                                                                            |                             |
|         | (b)    | Explain what happens to the depletion layer when a diode is forward biased.                                                | (2 marks)                   |
|         |        |                                                                                                                            |                             |
|         |        |                                                                                                                            |                             |
|         |        |                                                                                                                            |                             |

|     |     | con.                                                 |          |
|-----|-----|------------------------------------------------------|----------|
| 10. | (a) | State the purpose of cooling fins in the X-ray tube. | (1 mark) |
|     |     | at Page                                              |          |
|     |     | - Casegar                                            |          |
|     |     | * <sup>1</sup> eet                                   |          |
|     |     |                                                      |          |

(2 marks)

(b) State **two** differences between X-rays and gamma rays.

**SECTION B: (55 MARKS)** 

Answer question in this section in the spaces provided.

11. (a) State **two** ways in which one can increase the strength of an electromagnet. (2 marks)

(b) The following figure shows a conductor placed in a magnetic field. Indicate on the diagram the direction of motion of part AB of the conductor. (1 mark)



(c) A cell drives a current of 5A through  $1.6\Omega$  resistor. When connected to a  $2.8\Omega$  resistor, the current that flows in 3.2A. Find E and r for the cell. (4 marks)



Calculate the length of a nichrome resistance wire of cross-sectional area  $7 \times 10^{-8} \text{m}^2$  required to make a resistor of 10 ohms. (Take resistivity of nichrome =  $1.10 \times 10^{-6} \Omega \text{m}$ ). (3 marks)

(e) In figure below, calculate the p.d across resistor R.





12. I (a) The half life of cobalt 60 is 5 years. How long will a sample take for the activity to decrease to  $\frac{1}{16}$  of its value. (2 marks)

(b) The graph **below** shows radioactive decay of iodine.



Use the graph to determine the half-life of iodine.

(c) The figure **below** shows a G.M tube.

Amplifier 400V D.C

(2 marks)

|                    |                    |         | con                                                                         |           |
|--------------------|--------------------|---------|-----------------------------------------------------------------------------|-----------|
|                    |                    | (i)     | Give the reason why the micaswindow is made thin                            | (1 mark)  |
|                    |                    |         | Expare the reason will the integration is made time.                        |           |
|                    |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |
|                    |                    | (ii)    | Explain how the radiation entering the tube through the tube is detected by |           |
|                    |                    |         |                                                                             | (3 marks) |
|                    |                    | 200°    | <del></del>                                                                 |           |
|                    |                    | کر<br>ک |                                                                             |           |
|                    | C. E. D.           |         |                                                                             |           |
| wote fitee         | , 4 <sub>C</sub> , |         |                                                                             |           |
| \$ <sup>4</sup> 0° |                    |         |                                                                             |           |
| Wote               |                    | (iii)   | What is the purpose of the halogen vapour.                                  | (1 mark)  |
| •                  |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |
|                    | II                 | The fig | gure <b>below</b> shows a simple cathode ray tube.                          |           |
|                    |                    |         | Y X Fluorese                                                                | cent      |
|                    |                    |         | screen                                                                      |           |
|                    |                    | ĺ       | ( ♣ ├ ╞                                                                     |           |
|                    |                    |         |                                                                             |           |
|                    |                    |         | Electron Y X                                                                |           |
|                    |                    |         | gun Y A                                                                     |           |
|                    |                    | (i)     | Explain how the electrons are produced in the tube.                         | (2 marks) |
|                    |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |
|                    |                    |         |                                                                             |           |

(ii)

State **one** function of the anode.

(1 mark)



(1 mark)

. Paperi

(iv)

The figures **below** shows diagrams of the human eye.

Why is a vacuum created in the tube?

(a)

. (a)



(b)



- (i) Sketch in figure (a) a ray diagram to show long sightedness. (1 mark)
- (ii) Sketch in figure (b) a ray diagram to show how a lens can be used to correct the long sightedness. (2 marks)
- (b) Draw a ray diagram to show how a convex lens can be used as a magnifying glass. (2 marks)
- (c) The diagram **below** shows a ray of light travelling between water-glass interface.



Calculate the value of Z given that g = 1.52 and  $a^n w = \frac{4}{3}$ .

(3 marks)

Past

State **one** conditions for total internal reflection to occur.

(1 mark)

- 14. (a) A transformer with 2000 turns in the primary circuit and 150 turns in the secondary circuit has its primary circuit connected to a 800Va.c. source. It is found that when a heater is connected to the secondary circuit it produces heat at the rate of 1000W. Assuming 100% efficiency, determine the:
  - (i) Voltage in the secondary circuit.

(2 marks)

(ii) Current in the primary circuit.

(2 marks)

|                        |        | (iii)                            | Current in the secondary circuit.                                                                                                                                                                                                              | (1 mark)             |
|------------------------|--------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                        |        |                                  | Current in the secondary circuit.  State the type of transformer represented above.                                                                                                                                                            |                      |
|                        |        | (iv)                             |                                                                                                                                                                                                                                                | (1 mark)             |
| Note Free              | (b)    | (i) <sub>Q</sub> aQ <sup>6</sup> | State the reason why long distance power transmission is done at a very voltage and using thick cables.                                                                                                                                        | high<br>(1 mark)     |
| <sup>√</sup> 6 & √ 6 € | ,<br>& |                                  |                                                                                                                                                                                                                                                |                      |
| 'no,                   |        | (ii)                             | Calculate the cost of using the following appliances in one month (30 day company rate is Ksh.9.50 per unit.  I A 2000W water heater for 2 hours per day.  II A 75W bulb for 10 hours per day.  III An 1500W electric iron for 1 hour per day. | ys) of the (3 marks) |
|                        |        | (iii)                            | Find the total monthly bill for the above household if in addition to the exconsumed, the power company charges each consumer.  I A standing charge of Ksh.200.  II Fuel cost levy at 70 cents per unit.                                       | nergy<br>(2 marks)   |
| 15.                    | (a)    | Define                           | e the term work function.                                                                                                                                                                                                                      | (1 mark)             |
|                        |        |                                  |                                                                                                                                                                                                                                                |                      |

- cause photoelectric emission to occur fron.

  The speed of the emitted electrons is  $8.0 \times 10^5 \text{ms}$  and the speed of the emitted electrons is  $8.0 \times 10^5 \text{ms}$  (i) the work function of the metal. (2 mar) the work function of the metal.

(2 marks)

(iii) the frequency of the source. (3 marks)