	,	Oft.
NAME:		NDEX NO:
	per	
SIGNATURE:	*X592	DATE :
<u> </u>	200	

231/2 **BIOLOGY** PAPER 2 (THEORY) JULY / AUGUST 2013

TIME: 2 HOURS

NANDI NORTH DISTRICT JOINT MOCK **EVALUATION TEST 2013**

2 h past past Kenya Certificate of Secondary Education (K.C.S.E.)

BIOLOGY PAPER 2

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- (a) Write your Name and Index Number in the spaces provided.
- (b) <u>Sign</u> and write the <u>Date</u> of examination in the spaces provided.
- (c) This paper consists of TWO sections A and B.
- (d) Answer all questions in section A in the spaces provided.
- (e) In section B, answer question 6 (compulsory) and either question 7 or 8 in the spaces provided.

FOR EXAMINER'S USE ONLY

SECTION	QUESTION	MAX. SCORE	CANDIDATE SCORE
	1	8	
	2	8	
Α	3	8	
	4	8	
	5	8	
	6	20	
В	7	20	
	8	20	
	TOTAL	80	

SECTION A (40 MARKS)

Answer all questions in the spaces provided.

1. The	e diag	ram below shows how gaseous exchange occurs across the	gills of a fish.
	ood wit ygen c	ch low oming in	blood with 85% oxygen leaving
		aix — — — — — — — — — — — — — — — — — — —	
	ter wit	· · · · · · · · · · · · · · · · · · ·	water with 100% oxyger coming in
(a) _c	, Fror	m the diagram above, water and blood flow in opposite directi	on.
e stee tost		Give the term used to describe this type of flow.	(1mk)
stee t			
e *	(ii)	Explain the significance of this type of flow.	(2mks)
	,		
(b)	Nan	ne two organs in human beings that display the flow system	named in (a) (i)
	abo	ve.	(2mks)
(c)	 Evn	lain why the gills of a fish are:	
(0)	(i)	Highly vascularised.	(1mk)
	(-)		
	(ii)	Thin walled	(1mk)
	/····\	NA 2-4	(4 1)
	(iii)	Moist	(1mk)

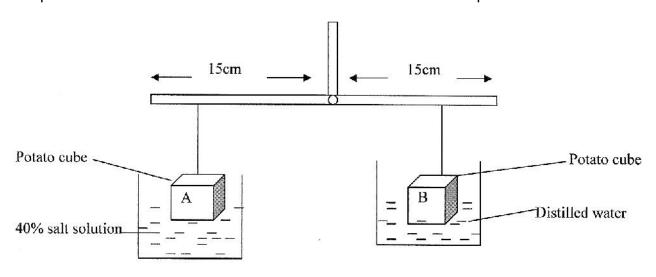
2. A pea plant with round seeds was goossed with a pea plant that had wrinkled seeds.

The gene for round seeds is dominant over that for wrinkled seeds.

Using letter R to represent the dominant gene state:

For More Free

(a)	The genotype of parents if plant with round seed was neterozygous.	(2mks)
	the distribution of the state o	
	4	


(b) The gametes produced by the round and wrinkled seed parents:
Round seed parent (1mk)

Wrinkled seed parent. (1mk)

(c) The genotype and phenotype of F₁ generation. Show your working. (3mks)

(d)	What is a test-cross?	(1mk)

3. A student set up an experiment to investigate a certain process. Study it and answer the questions that follow. The cubes are of the same size and shape.

(a) (i) Name the process being investigated.

(1mk)

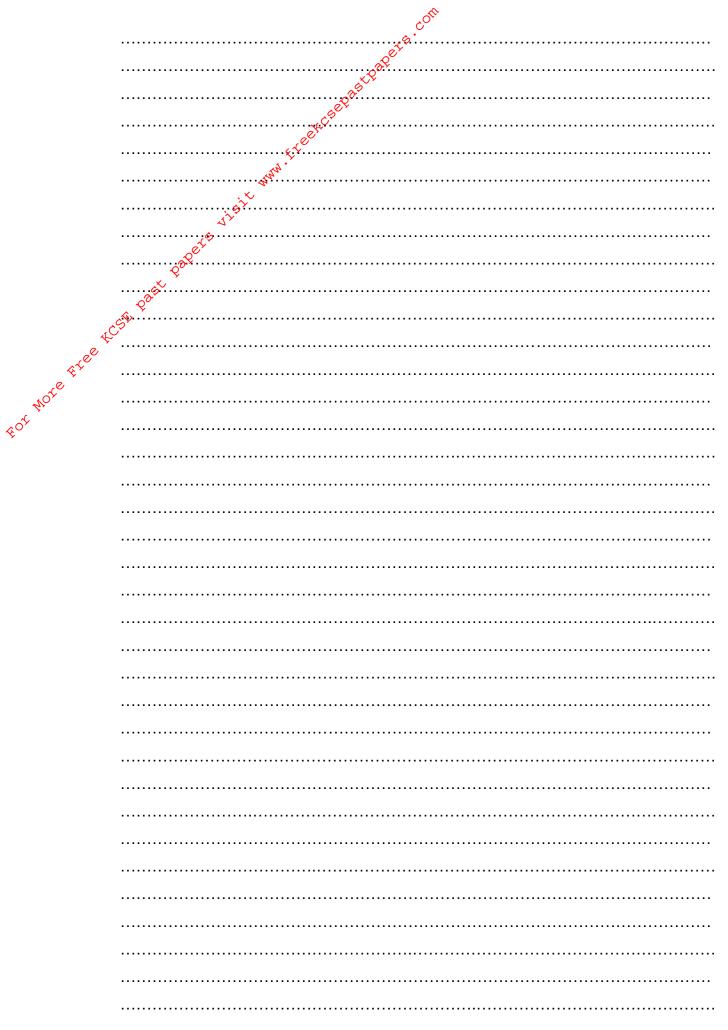
Fot More Fret

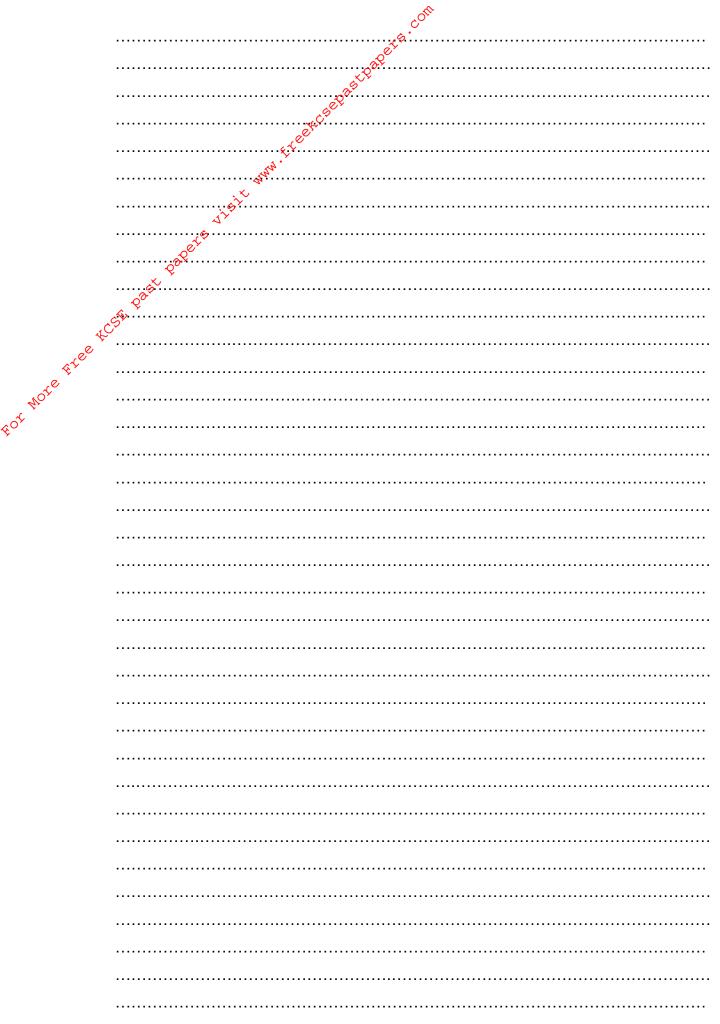
		~ ***	
(c) So	me substances are absorbed into the capillaries by active uptake.	
	(i)	Explain why active uptake is sometimes necessary.	(1mk)
	(ii)	Suggest why active uptake stops when the epithelial cells of the	e ileum are
		exposed to respiratory poison.	(1mk)
		√ [√] g	
5. Th	e dia	gram below shows a cross section through the female part of a flow	ver.
5. Th	Qaex .	Pollen Antipodal cells tube W W W Micropyle	
(a)	Nan	ne the structures labeled W, X and Y.	(3mks)
	X:		
	Y:		
	Z:		
(b)	Stat	te <u>two</u> functions of the pollen tube.	(1mk)
(c)	Wha	at happens to antipodal cells after fertilization?	(1mk)
(d)	Wha	at does semi-permeable membrane represent in an animal cell	(1mk)
(e)	Nan	ne the structure labeled K and state their role.	(2mks)

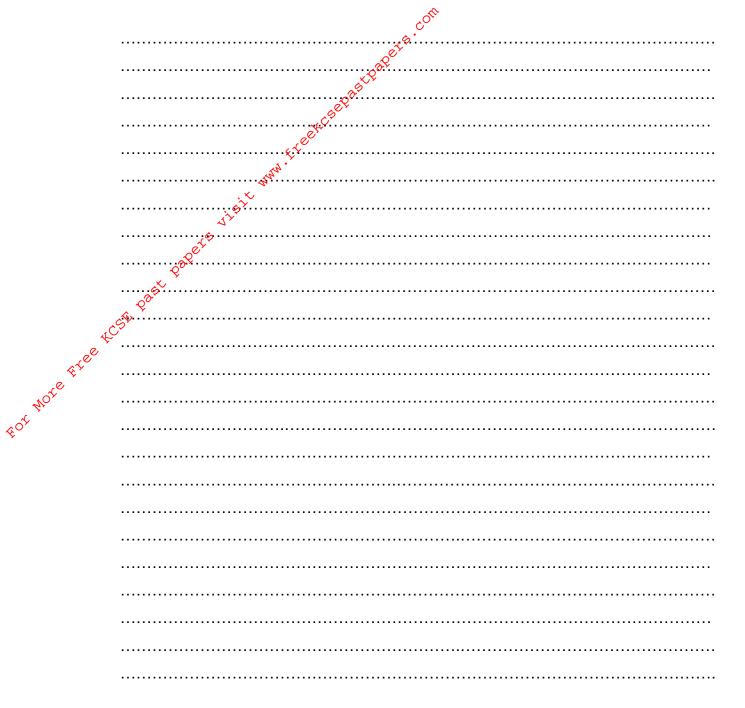
Answer question 6 (Compulsory) and any other one question from this section.

6. In an experiment, a plant was exposed to different light intensities and a range of carbon (IV) oxide concentration in a green house. Rate of photosynthesis was then determined using the product formed. The product was measured in mg-sec(s).

CO ₂ soncentration in air %2	γŎ	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
Dim light	0	28.5	37.0	44.0	50.0	55.0	55.5	55.5	55.5	55.5	55.5
Bright light	0	42.0	59.0	77.0	90.5	98.0	101.0	101.0	101.0	101.0	101.0


(a) Plot a graph of rate of photosynthesis against carbon (IV) oxide concentration.


(7mks)


6

(b)	(i)	At	what	interva	al of	carbon	(IV)	oxide	was	the	rate	of	photos	ynthesis
	dete	ermiı	ned?											(1mk)
														, ,
	···· -													
	(11)	Ihe	amour	nt of ca	rbon	(IV) OXIC	te in t	the atm	nosph	ere a	ır ıs a	ibot	it 0.03%	6. What
	was	the	rate o	f photo:	synth	esis at t	his co	ncentr	ation i	n din	n light	?		(1mk)
(م)	C		f		امناها	منا مس	0:4:m ~	the re	40 of	nh 040				on 0.40
(C)	Sug	ges	t the ra	actors v	wnicr	ı was iin	niting	tne ra	te or	pnoto	syntr	iesi	s betwe	en 0.12
	and	0.20	0% car	rbon (I∖	/) oxi	de in:								
	(i)	Din	n light.											(2mks)
	()		J											,
		••••												
	(ii)	Brid	aht ligh	nt.										(2mks)

		(d)	(i) Explain the advantages of the leaf being broad and flat.	(2mks)
			(ii) What is the fate of excess products of photosynthesis?	(2mks)
			Describe how photosynthesis theory accounts for changes on stomata	
		. 49	during the day.	(5mks)
	4 ^C	,5E	,	
more firee				
Hoze				
	7.	(a)	Explain why plants lack elaborate excretory organs like those found in ani	mals.
		()		(3mks)
		(b)	Name <u>five</u> methods of excretion in plants.	(5mks)
		(c)	State any six excretory products in plants and give economic uses.	(12mks)
	8.			(12mks) (20mks)
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			
	8.			

