NAME: \qquad INDEX NO: \qquad

SCHOOL: \qquad DATE : \qquad

SIGNATURE:

\qquad

121/1
MATHEMATICS
PAPER 1
JULY / AUGUST 2013
TIME: 2½ HOURS

NANDI NORTH DISTRICT JOINT MOCK EVALUATION TEST 2013

Kenya Certificate of Secondary Education (KCSE) MATHEMATICS
PAPER 1
TIME: 2½ HOURS

INSTRUCTIONS TO CANDIDATES

a) Write your Name and Index Number in the spaces provided at the top of this page.
b) Sign and write the date of examination in the spaces provided above.
c) This paper contains TWO sections: section I and section II
d) Answer all the questions in section I and any FIVE questions from section II.
e) All answers and working must be written on the question paper in the spaces provided below each question.
f) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
g) Marks may be given for correct working even if the answer is wrong.
h) Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

FOR EXAMINER'S USE ONLY:

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

GRAND TOTAL

17	18	19	20	21	22	23	24	TOTAL

Answer ALL Qaestions in this section

1. Evaluate:

$$
\frac{3 / 4+1^{2} / 7}{\left(1^{2} / 7-3 / 8\right)^{2} / 3} \frac{3}{3} \text { of } 2^{1} / 3
$$

2. A rectangular water tank has a base measuring 4 m by 2.5 m . This tank has water to a height of 90 cm . Water is then pumped into this tank continuously from 2240 hours to 2330 hours at the rate of 1.2 litres per second. Find the new depth of water in the tank after this period of time giving your result in metres.
(3mks)
3. The equation of a straight line L_{1} is given by $2 y+8 x-10=0$. Another line L_{2} cuts L_{1} at right angles such that the point of intersection of the two lines has coordinates $(-3$, k).
(a) Find the value of k .
(b) Hence find the equation of L_{2}.
4. The figure below is a semi-cylindrical sotid of length 18 cm and radius 3.5 cm as shown.

(a) \&ax the labeled net of the solid.
(b) Find the surface area of the solid.
5. If $\sin =\frac{15}{17}$ and is acute, find without using calculators or mathematical tables $\cos +\tan$.
6. The marked price of a modern camera is Kes 24,000. A trader sold it to a customer at a 10% discount. If the trader still nadde a profit of 20% on the cost price, what was its cost price?
(3mks)

7 α° On the figure below, $L m$ is parallel to $P Q$. Angle $M L R=30^{\circ}$ and angle RP $=70^{\circ}$. Find the value of x.

8. The points $P(-6,4)$ and $Q(2,2)$ are the end points of the diameter of a circle.
(i) Find the coordinates of the centre of the circle.
(ii) Hence find the equation of the circle giving your answer in the form $a x^{2}+b y^{2}+c x+d y+k=0$
9. Without using logarithm tables, find the value of x in the equation:

$$
\log x^{3}+\log 5 x=5 \log 2-\log 2 / 5
$$

sé tables to evaluate:-

$$
\frac{5}{(0.293)^{2}}-\sqrt{(4.125)^{3}}
$$

11. Four strings measuring $12 \mathrm{~cm}, 18 \mathrm{~cm}, 24 \mathrm{~cm}$ and 36 cm are cut into pieces of equal length so that exact number of pieces are obtained from each string without wastage. Find the longest length of each string.

Eight years from now, Dida's age will bestwelve years more than the sum of the ages of his brother and his son. Find Didás present age.
(3mks)

13. A polygon of n sides has half of the interior angles 150° each and the rest 170° each. Find the value of n.
(2mks)
14.A solid metal cuboid 1.5 m long, 0.4 m wide and 0.25 m high of material of density $7.5 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate it's mass in kilograms.
15. A Kenyan tourist left Germany for Kenya`through Switzerland. While in Switzerland, he bough a watch worth 52 Deutscheofnarks. Using the exchange rates below:

1 Swiss Franc = 1.28 Deutschémarks.
1 Swiss Franc = 45.21 Kenya shillings.
Find the value of the watchiris?
(a) Swiss Francs
(2mks)
(b) Kenya shillings
16. Using ruler and a pair of compasses only:
(a) Construct triangle ABC in which $\mathrm{BC}=8 \mathrm{~cm}$ and angle $\mathrm{ABC}=105^{\circ}$ and angle BAC $=45^{\circ}$.
(3mks)
(b) Drop a perpendicular from A to meet line $B C$ at P. Determine the area of triangle ABC.

SECTION Ib(50 MARKS)

Answer any five questions in this section

17. Five members of 'SILK', a selfesupporting enterprise Jane, Jepchoge, Esther, Mama Charo and Chepkoech werés given a certain amount of money to share amongst themselves. Jane got x remainder. The remaining amount was shared equally among Esther, Mama Charo and Chepkoech each of which received Kshs. 6,000;
(a) How muchsivas shared among the five business women?
(b) How mucch did Jepchoge get?
(c) Janef Jepchoge and Chepkoech invested their money and earned a profit of Ksfis. 12,000. A third of the profit was left to maintain the business and the rest ${ }^{x}$ was shared according to their investments. Find how much each got. (5 mks)
18. The following data shows the sample of aige distribution of the people who reside in a certain village in years, in Nandi Coundity.

Age group	Frequencye
1........... 5	c^{48}
6.......... 10	$e^{e^{x^{c}}} 8$
11......... 20	जे 8
$21 \ldots \ldots .30$	6
$31 \ldots \ldots . .50{ }^{3 j^{2}}$	40
51......... 5 85	3
$56 \ldots \ldots .26$	3

Complete the histogram of the given data below.

(b) Calculate the mean age of the given sample in the village.
19. (a) (i) Complete the table below the quadratic graph $y=2 x^{2}-4 x-9$ in the range, -4

$\leq x \leq 5$.					$5_{5}^{\text {x }}$ +					
x	-4	-3	-2	$-1 e^{\text {e }}$	0	1	2	3	4	5
y		21		${ }^{\circ}$			-9			

(ii) On the grid prowided, draw the graph of $y=2 x^{2}-4 x-9$ for values of x from 4 to +5
(b) Use your graph to solve the following quadratic equations:-
(i) $2 x^{2} e^{a} e^{c}-4 x-9=0$
(ii) $2 x^{2}-6 x-12=0$
(2mks)
(a) Without using the graph, determine the coordinates of the turning points on the graph.
(2mks)

20. In the diagram below, $O A B C$ is a parafle point on line OA such that $O N: N A_{5}=1: 2$.

(a) In terms of a and b, find:-
(i) $e^{2} \mathrm{~A} \mathrm{~A} \mathrm{C}$
(ii) BN
(2mks)
(b) Line $A C$ and $B N$ intersect at point X such at $A X=h A C$ and $B X=k B N$.
(i) By expressing OX in two different ways, find the values of h and k. (6mks)
(ii) Express OX in terms of vectors a and b .
21. A ship B is on bearing of 080° from pert A and at a distance of 95 km . another ship is stationed at port D which is on ger^{2} bearing of 200° from A and a distance of 124 km from B. A ship leaves B and moves directly to island P which is on a bearing of 140° from A.
(a) Using a scale of $1 \in m$ to represent 10 km , make a scale drawing to show the relative position ${ }^{s}$ of A, B, D and P.
(b) Hence find:-
(i) The distance from A to D .
(2mks)
(ii) The bearing of D from B.
(iii) The bearing of P from D.
(iv) The distance from P to D .
22. A pail is in the shape of a container frustum with base radius 6 cm and top radius 8 cm . The slant height of the pail is 30 cm as shown below. The pail is full of water.

(a) Calculate the volume of water.
(b) All the water is poured into a cylindrical container of circular radius 7 cm , if the cylinder has the height of 35 cm , calculate the surface area of the cylinder which is not in contact with water.
(4mks)
23. Onyango and Juma live 200km apare..$^{\frac{e^{5}}{5}}$ One day, Onyango left his house at 7.00 am and travelled toward's Juma's howise at an average speed of $30 \mathrm{~km} / \mathrm{hr}$. Juma left his house at 7.30am on the sameqday and travelled towards Onyango's at an average speed of $40 \mathrm{~km} / \mathrm{hr}$.
(a) Determine:-
(i) The time theysmet.
(ii) The distance from Onyango's house where the two met.
(iii) How far was Onyango from Juma's house when they met?
(b) The two took 15 minutes at the meeting point and then travelled to Juma's house at an average speed of $20 \mathrm{~km} / \mathrm{hr}$. Find the time he arrived at Juma's house.(2mks)
24. A theatre has a seating capacity of 250 people. The charges are Kshs. 100 for an ordinary seat and Kshs. 160 for $a_{5} s p e c i a l$ seat. It costs Kshs. 16,000 to stage a show and the theatre must make a profit. There are never more than 200 ordinary seats and for a show to take place at least 50 ordinary seats must be occupied. The number of special seats, is always less than twice the number of ordinary seats. Taking x to be the number of ordinary seats and y the number of special seats:-
(a) Write down all the inequalities representing the above information.
(b) On the grid provided, draw the graph to show the inequalities.
(c) Determine the number of seats each type that should be booked in order to maximize the profit.
(d) Determine the maximum profits.

