NAME: \qquad INDEX NO: \qquad
\qquad
\qquad

SIGNATURE:

\qquad

121/2
MATHEMATICS
PAPER 2
JULY / AUGUST 2013
TIME: 2½ HOURS

NANDI NORTH DISTRICT JOINT MOCK EVALUATION TEST 2013

Kenya Certificate of Secondary Education (KCSE) MATHEMATICS
PAPER 2
TIME: 2½ HOURS

INSTRUCTIONS TO CANDIDATES

a) Write your Name and Index Number in the spaces provided at the top of this page.
b) Sign and write the date of examination in the spaces provided above.
c) This paper contains TWO sections: section I and section II
d) Answer all the questions in I and any FIVE questions from section II.
e) All answers and working must be written on the question paper in the spaces provided below each question.
f) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
g) Marks may be given for correct working even if the answer is wrong.
h) Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.

FOR EXAMINER'S USE ONLY:

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

GRAND TOTAL

17	18	19	20	21	22	23	24	TOTAL

Answer ALL Questions in this section

1. Use logarithm tables to evaluate σ^{α}

2. Simplify: $\frac{3}{\sqrt{5-2}}+\frac{1}{\sqrt{5}}$
leaving the answer in the form $a+b \sqrt{ } c$ where a, b and c are rational numbers.
3. A point $Q(-2,3)$ is given translation $\binom{-1}{4}$. Find point Q, the image of Q under translation. If Q^{\prime} is given a translation $\left({ }^{1}-2\right)$ find the co-ordinates of $Q^{\prime \prime}$, the image of Q'. What single translation maps onto $\mathrm{Q}^{\prime \prime}$?
4. Make n the subject of the formula.

$$
A=\sqrt{\frac{y(n-y)}{n-1}}
$$

5. The length and breadth of a rectangularpaper were measured to the nearest centimeter and found to be 18 cm anḑ, 12 cm respectively. Find the percentage error in its perimeter.
6. $(a)^{9}$ Expand and simplify $(3-x)^{5}$
(2mks)
(b) Use the first four terms of the expansion in part (a) above to find the approximate value of $(3.8)^{5}$ to 2 decimal places.
(2mks)
7. Under a transformation whose matrix is $\left[\begin{array}{cc}x-1 & 3 \\ 1 & x+1\end{array}\right]$

An object of area $12 \mathrm{~cm}^{2}$ is mapped onto an image whose area is $60 \mathrm{~cm}^{2}$. Find the possible value of x.
8. Vector M passes through the points $(6,8)$ and $(2,4)$. Vector n passes through $(x,-2)$
9. A, box contains 6 yellow balls, 4 white balls and 2 blue balls, all balls being similar in shape. A ball is picked at random without replacement and its colour noted. Use a tree diagram to determine the probability that at least one of the first two balls picked is blue.
(4mks)
10. A curve is given by the equation $y=5 x^{3}-7 x^{2}+3 x+2$. Find the gradient of the curve at $x=1$.

3:5 respectively.
(a) Find the mass of maize in the mixture.
(b) A second mixture B of beans and maize of mass 98 kg is mixed with A. The final ratio of beans to maize is $8: 9$ respectively. Find the ratio of maize to beans in B.
12. The data below represents the ages in months at which 6 babies started walking; 9 , $11,12,13,11$ and 10. Without using a calculator, find the exact value of the variance of the data.
13. If $x=2 \cos \alpha$, show that

$$
\sqrt{\frac{4-x^{2}}{x}}=\tan \alpha
$$

(Consider positive square roots only)
14. The first, the third and the seventh term of an increasing arithmetic progression are
three consecutive terms of a geometric progression. If the first term of the arithmetic progression is 10 , find the common difference of the arithmetic progression. (4 mks)
 Given that the area of the rectangle is $25 \mathrm{~cm}^{2}$, find its length.
(3mks)
16. The figure below represents a triangular prism. The faces $A B C D, A D E F$ and CBFE are rectangles. $A B=8 \mathrm{~cm}, B C=14 \mathrm{~cm}, B F=7 \mathrm{~cm}$ and $A F=7 \mathrm{~cm}$.

Calculate the angles between faces BCEF and ABCD.

Answer any five questions in this section

17. Mwenda borrowed a short-term loan of Shs. 300,000 from a bank and arranged to pay back in three equal yearlyetnstallments of sh. 100,000 each. The bank charges compound interest at the rate of 20% per annum and ledger fee at $21 / 2$ per annum on any outstanding balance at the beginning of that year. In order to clear the loan on time, Mwenda paid the installment plus interest and ledger fee at the end of each year for three years. Calculate the total amount of money Mwenda paid back in order to clear the loans ${ }^{3}$
(a) (i) Draw the locus of point R abgver line $P Q$ such that the area of the triangle PQR is $12 \mathrm{~cm}^{2}$.
(ii) Given that point R is eqgiidistant from P and Q, show the position of the point
R.
(b) Draw all possible toci of point T such that $\angle R Q L=\angle R T L$.
square of r.
(a) When $p=18, q=24$ and $r=4$.

Find p when $q=30$ and $r=10$
(b) Express q in terms of p and r.
(c) If p is increased by 20% and r is decreased by 10% find:
(i) A simplified expression for the change in q in terms of p and r.
(ii) The percentage change in q .

| x^{0} | 0 | 30 | 60 | 90 | 120 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Sin} 2 \mathrm{c}$ | 0 | | 0.87 | | -0.890 | 180 | 210 | 240 | 270 | 300 | 330 | 360 |
| $3 \cos \mathrm{x}-2$ | 1 | 0.60 | | -2 | 0 | 0.87 | 0.87 | | | | 0 | |

(b) On the grid provided draw 敤e graph of $y=\sin 2 x$ and $y=3 \cos x-2$ for $0^{0} \leq x \leq 360^{\circ}$, on the sameates.
Use the scale of 1 cm represent 30° on the x-axis and 2 cm to represent 1 unit on the y-axis.
(c) Use the graph in (b) above to solve the equation $3 \cos x-\sin 2 x=2$.
(d) State the amplitude of $y=3 \cos x-2$
(a) On the grid provided, draw the quadrilateral ABCD.
(b) $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of $A B C D$ under positive quarter turn about the origin. On the same grid draw the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Show the coordinates of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. (3mks)
(c) A " $\mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} \mathrm{D}$ " is the image of $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ under the transformation given by the matrix $\left[\begin{array}{cc}1 & -2 \\ 0 & 2\end{array}\right]$
(i) Determine the coordinates of A"B"C"D".
(ii) On the same grid, draw the quadrilateral A"B"C"D"
(d) Determine a single matrix that maps ABCD onto A"B"C"D"
and QUV are straight lines. QS is parallel to TV. Angles $S Q R=40^{\circ}$ and $T Q V=55^{\circ}$.

(a) Find the following angles giving reasons each case.
(i) <QTS
(ii) <QRS
(iii) <QVT
(iv) <QUT
(b) Given that $\mathrm{QR}=8 \mathrm{~cm}$, and $\mathrm{SR}=4 \mathrm{~cm}$. Find the radius of the circle.
23. (a) Using the trapezoidal rule, estimate the area under the curve $y=1 / 2 x^{2}-2$
(b) Use the integration to evaluate the exact area under the curve.
(c) Hence calculate the percentage error in calculating the area using trapezoidal rule.
(a) Calculate the distance covered bye the plane in kilometers.
(b) After stopping for 30 minutes to refuel at Y , the plane then flies due east to airport Z, 2500km from Y. Find:-
(i) The position of Z.
(ii) The time the plane lands at Z, if its speed is $500 \mathrm{~km} / \mathrm{h}$.
(Take the value of π as ${ }^{22} / 7$ and radius of the earth as 6370 km)

