NAME: \qquad INDEX NO: \qquad

SIGNATURE: \qquad DATE : \qquad

SIGNATURE:

\qquad

232 / 3
PHYSICS
PAPER 3
(PRACTICAL)

JULY / AUGUST 2013

TIME: $2 ½$ hours

NANDI NORTH DISTRICT JOINT MOCK EVALUATION TEST 2013

Kenya Certificate of Secondary Education (KCSE)
 PHYSICS
 PAPER 3
 TIME: 2 ½ HOURS

INSTRUCTIONS TO CANDIDATES

(a) Write your Name and Index Number in the spaces provided above.
(b) Sign and write the date of Examination in the spaces provided above.
(c) Answer all questions in the spaces provided.
(d) You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before commencing your work.
(e) Marks will be given for clear records of observations actually made, their suitability, accuracy and the use made of them.
(f) Candidates are advised to record their observations as soon as they are made.
(g) All working must be clearly shown where necessary.
(h) Mathematical tables and silent electronic calculators may be used in calculations.

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1	20	
2	20	
TOTAL	$\mathbf{4 0}$	

1. You are provided with the following:-

- Two dry cells.
- Nichrome wire 100 cm on a mîn scale.
- An ammeter.
- Cell holder.
- Voltmeter.
- Connecting wồres with crocodile clips.
- Switch.

Proceed as follows:

(a) Connect the circuit as shown in the diagram.

(b) Connect the ends A and C where $A C$ is the length L of the Nichrome wire across the terminals as shown. Close the switch and measure both current I and potential difference (p.d) across the wire $A C$ when $L=100 \mathrm{~cm}$. Current I =
p.d. $\mathrm{V}=$
(c) Measure the E.m.f. of the cells, E.
$E=$
(d) Reduce the length $L(A C)$ to the lemgths shown in the table below. In each case record the current, I, and the coresponding p.d.

Length L (cm)	100	e) ${ }^{\text {¢0 }}$	60	50	40	20
1 (A)						
P.d (V)	$4{ }^{4}$					
$E-V(v)$ ss						

(e) Plot a graph of $E-V$ against (A) on x-axis in the grid provided.

(f) Determine the slope of the graph.
(g) Given that $\mathrm{E}=\mathrm{V}+\mathrm{Ir}$, determine the internal resistance, r , of each cell. (2mks)
2. You are provided with the following apparatus:-

- A metre rule.
- One stop watch. one stand, Ghàmp and boss.
- One spring.
- Two pieces of wood:
- A beam balanceôr electronic balance (to be shared)
- One mass lab้̄́led M.

Proceed as follows:

(a) brang the spring vertically by clamping one end as shown in figure 1. (The small pieces of wood to clamp the spring).

(b) Measure the length, Lo, of the unloaded spring, and record below.

Lo \qquad mm
($1 / 2 \mathrm{mk}$)
(c) Hang the mass M given from the lower end of the spring. Measure the length, L_{1} of the loaded spring.
$L_{1}=$ \qquad mm
(d) Find the value of L_{1} - Lo in centimeters
$\mathrm{L}=\mathrm{L}_{1}-\mathrm{Lo}$ \qquad cm
(e) Using the balance given, find the mass of the object M .

Mass of $\mathrm{M}=$ \qquad g
(f) Hang the mass M from the lower end of the spring. Displace it by a small vertical distance and release so that the spring makes vertical oscillations.

Measure and record, time for the number of oscillations given in the table below.

Oscillations, N	5	7	210	13	15	18	20
Time in seconds, t (s)							
$\frac{(\mathrm{N}+10 \mathrm{t})}{10}(\mathrm{~s})$							
$\left.\frac{(\mathrm{N}+10 \mathrm{t}}{19}\right)^{2}\left(\mathrm{~s}^{2}\right)$							

Complete the table above.
(g) On the grid provided, plot a graph of $[\underline{N+10 t}]^{2}(y$-axis) against N.

(h) (i) Determine the slope S , of the graph at $\mathrm{N}=16$.
(ii) Find the constant k , given that:

$$
\mathrm{K}=\frac{\mathrm{MS}}{13 \mathrm{~L}}
$$

