	OT		
	NAME:	· INDEX NO:	
	SIGNATURE:	DATE :	
	erceet	SIGNATURE:	
	232/3 www. ^{Fre}		
	PHYSICS		
	PAPER 3		
	JULY / AUGUST 2013		
	TIME: 2 ¹ / ₂ hours		
	CSE Past		
	e e		
More Fre	NANDI NORTH DISTRICT JOINT MOCK		
\$0 [°]	EVALUATION TEST 2013		

NANDI NORTH DISTRICT JOINT MOCK **EVALUATION TEST 2013**

Kenya Certificate of Secondary Education (KCSE) PHYSICS PAPER 3 TIME: 2 1/2 HOURS

INSTRUCTIONS TO CANDIDATES

- (a) Write your Name and Index Number in the spaces provided above.
- (b) Sign and write the date of Examination in the spaces provided above.
- (c) Answer all questions in the spaces provided.
- (d) You are supposed to spend the first 15 minutes of the 21/2 hours allowed for this paper reading the whole paper carefully before commencing your work.
- (e) Marks will be given for clear records of observations actually made, their suitability, accuracy and the use made of them.
- (f) Candidates are advised to record their observations as soon as they are made.
- (g) All working must be clearly shown where necessary.
- (h) Mathematical tables and silent electronic calculators may be used in calculations.

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1	20	
2	20	
TOTAL	40	

- 1. You are provided with the following:-
 - Two dry cells.
 - Nichrome wire 100cm on a min scale.
 - An ammeter.
 - Cell holder.
 - Voltmeter.
 - Connecting wires with crocodile clips.
 - Switch.

(a)

For More Free tc,

Proceed as follows:

.s. com

(b) Connect the ends A and C where AC is the length L of the Nichrome wire across the terminals as shown. Close the switch and measure both current I and potential difference (p.d) across the wire AC when L = 100cm.
 Current I = (1mk)

(c) Measure the E.m.f. of the cells, E.
 E = (1mk)

(d) Reduce the length L (AC) to the lengths shown in the table below. In each case record the current, I, and the corresponding p.d. (7mks)

- Plot a graph of E V against (A) on x-axis in the grid provided. (5mks) (e) FOT NOTE Free
 - (f) Determine the slope of the graph.

(3mks)

(g) Given that E = V + Ir, determine the internal resistance, r, of each cell. (2mks)

- 2. You are provided with the following apparatus:-
 - A metre rule.
 - One stop watch. one stand, Mamp and boss.
 - One spring.
 - Two pieces of woods
 - A beam balance or electronic balance (to be shared)
 - One mass labeled M.

Proceed as follows:

For More Free

(a) Hang the spring vertically by clamping one end as shown in figure 1. (The small pieces of wood to clamp the spring).

- (b) Measure the length, Lo, of the unloaded spring, and record below.
 - Lo _____ mm (½ mk)
- (c) Hang the mass M given from the lower end of the spring. Measure the length, L_1 of the loaded spring.

(½ mk)

- L₁ = _____ mm
- (d) Find the value of $L_1 L_0$ in centimeters $L = L_1 - L_0$ (1mk)
- (e) Using the balance given, find the mass of the object M.
 Mass of M = _____ g (1mk)
- (f) Hang the mass M from the lower end of the spring. Displace it by a small vertical distance and release so that the spring makes vertical oscillations.

(h) (i) Determine the slope S, of the graph at N = 16.

(3mks)

(ii) Find the constant k, given that:

$$K = \frac{MS}{13L}$$
(2mks)

For wore Free tose page pagers visit www.freetcaepastpagers.com