\qquad
\qquad
\qquad 2..... STGJ. \qquad
\qquad
232/3
PHYSICS
PAPER 3 (PRACTICAL)

FORM 4

MARCH 2013

TIME: $2 \frac{1}{2} 2 \mathrm{HOURS}^{2}$

PENTAGON J OINT EXAMINATIONS WARENG DISTRICT The Kenya Certificate of Secondary Education

INSTRUCTIONS TO CANDIDATES

- Write your name, index number and sign in the spaces provided.
- Write the date of examination in the spaces provided above.
- Answer ALL the questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of he $21 / 2$ hours allowed for this paper reading the whole paper carefully to confirm that you have all the apparatus required for this examination before commencing your work.
- Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and for KNEC mathematical tables may be used except where stated otherwise.

FOR EXAMINERS USE ONLY Q1

Question	$\mathrm{a}(\mathrm{i})$	(vi)	a	b	Total
Maximum score	1	6	5	8	20
Candidates score					

Q2

Question	d	e	f	h	i	j	Total
Maximum score	1	6	3	5	1	2	20
Candidates score							

1. You are provided with the following;

- A pair of vernier calipers (to be shared)
- A stop watch or stop clock
- Two retort stands, two boses and two clamps
- A cylindrical 20 g masswith a hook attached
- A metre rule
- A piece of cottanthread

Procedure

i) Measure the diameter, d of the cylindrical mass using the vernier calipers provided.

 e° the thread at the hook).

Use your pen to mark on the loose ends of the thread points A and B 50 cm from the point where the hook of the mass is tied.
iv) Fix the bosses on the stands at points 60 cm above the bench. Suspend the bob between the two stands by tying the loose ends of the thread to the bosses at the points marked in (b) above. See figure 1 (A and B are marked points)

fig 1
v) Adjust the position of one of the stands (by moving it close to or away from the other) so that the distance X is 50 cm . Give the mass a small displacement perpendicular to the plane containing the two portions of the thread and then release it. Measure t, the time for 10 oscillations. Repeat the measurement and record in Table 1.
vi) Repeat the procedure in (e) for other values of x shown in the table and complete the table.

Table I

Distance $\mathrm{x}(\mathrm{cm})$	50	55	60	65	70	75	80	85	90
Time c)									
Periodic Time T (s)									
$\mathrm{T}^{2}\left(\mathrm{~s}^{2}\right)$									
$\frac{x}{d}$									

(6marks)
a) On the grid provided plot a graph of T^{2} against (x / d).
(5marks)

b) Given that $\mathrm{T}^{2}=\mathrm{m}\left(\frac{x}{d}\right)+\mathrm{K}$ where m and k are constants, use your graph to determine;
i) m
(3marks)
ii) The value of the periodic time when $x=0 \mathrm{~cm}$.
(3marks)
iii) Time t , for 10 oscillations when $\mathrm{x}=25 \mathrm{~cm}$.
(2marks)
2. This question has two parts A and B. Answer boin parts.

PARTA

You are provided with the following:

- A rectangular glass block
- Four optical pins
- A piece of soft boarat
- A plain sheet offpaper
- A piece of cètlotape

You are required $\underset{\sim}{\text { on }}$ have your complete mathematical set.

Proceed as follows;

a) ${ }^{\circ} e^{\partial}$ Place the plain sheet of paper on the soft board and fix it firmly using cellotape. Place the glass block at the centre of the sheet, and draw its outline. Remove the glass (see figure 2).

b) Draw a normal at a point 2 cm from the end of one of the longer side of the block outline. This normal line will be used for the rest of this experiment.
Draw line at O at an angle of 20° from the normal stick two pins P_{1} and P_{2} vertically on this line.
c) By viewing through the glass from the opposite side stick two other pins P_{3} and P_{4} vertically such that they are in line with the images of the first two pins. Draw a line through the marks made by P_{3} and P_{4} to touch the normal extended.
Measure and record in table 2 the acute angle (β) made between the extended normal and line $\mathrm{P}_{3} \mathrm{P}_{4}$ (see figure 2)
Record this value in table 2.
d) Repeat the procedure in (b) and (c) for other values shown in table 2.

NB: The sheet of paper with the drawing MUST be handed in together with this question paper. Ensure you write your name and index number on the sheet of paper.
Table 2

θ (deg)	20	30	35	45	55	60	65
β (deg)							

ii) Using the graph estimate the value of β when $\theta=0^{0}$
(1mark)

PART B

You are provided with the following

- A voltmeter
- Amillammeter,(MA)
- A resistance box with values indicated
- A switch S
- Two cells aritd a cell holder
- Connectîtitg wires
- Unkenown resistor R

Proceed as follows:
f)

Complete the diagram fig. 3 below to show how you would determine the resistance of the unknown resistor using the ammeter-voltmeter method, using the apparatus. (1mark)

Fig. 3

Using the set-up you have drawn above set-up the circuit and record the following;
ii) MA reading I - \qquad Amperes
(1mark)
iii) Voltmeter reading V - \qquad volts
(1mark)

Hence calculate the resistance of the unknown resistor. R_{u}
iv) $\mathrm{R}_{\mathrm{u}}=\frac{V}{I} \ldots \ldots$. Ohms.
(1mark)
g) i) Now dismantle your set-up in (f) above and set-up the apparatus as shown in the circuit diagram of fig. 4 .

Fig. 4
ii) Close the switch and recordiin table 3 the voltmeter reading V. Open the switch.
h) Repeat the procedure in g (i) and fiii) for other values of resistance R showing in the table 3 . Complete the table.
Table 3.

Resistance R ($\Omega^{\text {s }}{ }^{\text {s }}$	1000	2000	3000
$\mathrm{V}(\mathrm{v}) \quad$ \% ${ }^{2}$			
$\mathrm{I}=\frac{\mathrm{V}}{R}(\mathrm{~A})^{2}{ }^{\text {a }}$			

i) $e^{2^{2}}$ alculate the average value of I from table 3.

Average, $\mathrm{L}=$... (1mark)
j) Determine Q given that $\mathrm{L}=\sqrt{\frac{R_{u}}{Q}}$

