..INDEX......DATE..... .SIGNATURE..... 233/1 **CHEMISTRY** PAPER 1 JULY / AUGUST, 2013 2 HOURS

SUBUKIA DISTRICT JOINT TEST

Kenya Certificate of Secondary Education 2013

233/1

CHEMISTRY

PAPER1

JULY / AUGUST 2013

INSTRUCTIONS TO CANDIDATES

- **Answer all** questions in the spaces provided.
- ❖ Mathematical tables and electronic calculators may be used.
- ❖ All workings **must** be shown where necessary

For Examiner's Use Only

Questions	Maximum Score	Candidates Score
1-30	80	

a)Name the regions labeled C and A (2mks)

C
A
b)State any one observation made if the air hole of the above Bunsen burner is adjusted fully. (1mk)
2.Hardness of water may be removed by either boiling or addition of chemicals. a)Write an equation to show how boiling removes hardness of water. (1mk)
b)Name two chemicals that are used to remove hardness of water. (1mk)

3. Hydrogen and Oxygen can be obtained by electrolysis of acidified water. Using equations for the reactions at the electrodes, explain why the volume of hydrogen obtained is twice that of Oxygen. (2mks)

b) If the mass of one mole of the compound is 242, calculate or find its molecular formula. (1mk)

	o aet Pape
	6. A sample of water in a beaker was found to boil at 102.0 °C at 1 atmospheric pressure. Assuming that the thermometer was not faulty, explain this observation. (1mk)
	Çager [‡]
	7. (a) Complete the nuclear equation below: (1mk)
	131 ₅₄ Xe +
.01	b) The half-life of ¹³¹ ₅₃ I is 8 days. Determine the mass of ¹³¹ ₅₃ I remaining if 50 grammes decayed for 40 days. (1mk)
	c) Give one negative effect of radioisotopes. (1mk)
	8. When lead (II) nitrate is heated, one of the products is a brown gas.
	a) Write an equation for the reaction that occurs. (1mk)
	b) If 0.58dm ³ of the brown gas was produced, what was the mass of the lead (II) nitrate that was heated?(Pb=207,N=14,O=16, Molar gas Volume=24dm ³) (2mks)

	9. Hydrogen sulphide is a highly toxic and flammable gas and is usually prepared in the fume
	chamber.
	a) Name any two reagents that can be used to prepare hydrogen sulphide in the laboratory. (1mk)
	A [†]
	b) Hydrogen sulphide could be used to produced sulphur as shown in the equation below:
	$2H_2S_{(g)} + SO_{2(g)} \longrightarrow 3S_{(s)} + 2H_2O_{(l)}$
	In the equation above, identify the reducing agent and give a reason for your answer. (1mk)
^J , Se & L,	
	c) Other than Vulcanisation of rubber, identify two other uses of Sulphur. (1mk)
	10. a) Draw and name the structure of the compound formed when one mole of ethyne reacts with one mole of hydrogen bromide. (2mks)
	b) A certain alkyne has the molecular formula C_4H_6 . Draw its structures. (1mk)
	11. Starting with 100cm ³ of 2M sodium hydroxide solution, describe how pure sample of sodium chloride crystals can be prepared. (3mks)

(1 1)	. × ~	als Magnesium and Aluminium are good conductors of electr
	7,	
, \$	<i>.</i>	
b) Other than c	ost, give two	other reasons why aluminium is used for making electric cab
white magnesi		
·····		
12 Study the o	tandard raduat	ction potentials given below and answer the questions that fol
•		ne actual symbols of the elements.)
$M^{2+}_{(aq)} + 2e^{-}$	\longrightarrow $M_{(s)}$	E = -0.76V
$N^{2+}_{(aq)} + 2e^{-}$	\rightarrow $N_{(s)}$	E = -2.37V
$P^+_{(aq)} + e^-$	\rightarrow $P_{(s)}$	E = +0.80V
$Q^{2+}_{(aq)} + 2e^{-}$	→Q (s)	E = -0.14V
	e for Fe ²⁺ (aq) is	is -0.44V. Select the element that would best protect iron from
rusting. (1mk)		
	• • • • • • • • • • • • • • • • • • • •	
		r the cell represented by $M/M^{2+}_{(aq)}//P^{+}_{(aq)}/P_{(s)}$ (2mks)

gas produced compare with the above? Explain. (1Mk)	
b) Explain why;	
i) Helium is increasingly being preferred to hydrogen in weather balloons. (1mk)	
ii) Hydrogen, though an ideal fuel, is not commonly used. (1mk)	
	•

15. Dinitrogen (1v) oxide (N₂O₄) decomposes in a closed container according to the following

equation:

16. Samples of urine from three participants F, G and H at a sporting event were spotted on a chromatography paper alongside two from illegal drugs A_1 and A_2 . The figure below shows the final chromatography after methanol solvent was added.

a) Identify the athlete who used an illegal drug. (1mk)
b) Which drug is more soluble in methanol? (1mk)

17. When Magnesium was burnern air, a solid mixture was formed. On addition of water to the mixture, a gas which turns moist red litmus paper blue was evolved. Explain the observations. (2mks)

Agent and a second a second and a second and a second and a second and a second and

The graph below shows the relationship between pressure and temperature of a gas in a fixed volume container.

a)State the relationship between pressure and temperature that can be deduced from the graph. (1mk)

.....

b) Use the Kinetic Theory on energy to explain the relationship shown in the graph. (2mks)

9. The structure below represents a sweet smelling compound.

	Give the names of two orgalaboratory (2mks)	nic compounds that	can be used to prep	are this compound i	n the
	laboratory. (2mks)	y.			
	20. When 8.53g of sodium is produced was 0.83g. given to	nitrate were heated i	in an open test tube,		gas
	2NaNO _{3(s)}	$2\text{NaNO}_{2(s)} + \text{O}_{2(s)}$	g)		
e	Calculate the percentage of	sodium nitrate that	was converted to so	dium nitrite.	
ice & fr	Na=23, N=14, O=16)		(3mks)		
io,					
					• • • • • • • • • • • • • • • • • • • •
			••••		• • • • • • • • • • • • • • • • • • • •
					•••••
	21. The structure of methan	oic acid is;			
	O 				
	Н-С-О-Н				
	What is the total number of reasons. (2mks)	electrons used for b	oonding in a molecu	le of methanoic acid	l? Give
					• • • • • • • • • • • • • • • • • • • •
			•••••		• • • • • • • • • • • • • • • • • • • •
	•••••				• • • • • • • • • • • • • • • • • • • •
	22. (a) Dry blue and red little explain the observation made		pped in a gas contai	ining chlorine gas. S	tate and

C_{i}^{*}
nguish barium sulphite from barium sulphate. (2mks)
guisi carrent surprise (2 mis)
re contains ammonium chloride, copper (II) oxide and sodium chloride. Describe the substances can be obtained from the mixture. (3mks)
re contains ammonium chloride, copper (II) oxide and sodium chloride. Describe
the substances can be obtained from the mixture. (3mks)
n mass of a gas occupies 150cm ³ at 20 ^o c and 98.7 kpa. Calculate the volume it would
T.P. (2mks)

25. The table below shows some properties of three elements in group VII of the periodic table. Study it and answer the questions that follow.

Element	Atomic no	melting point (⁰ C)	boiling point (⁰ C)
Chlorine	17	-101	-34.7
Bromine	35	-7	58.8
Iodine	53	114	184

a) Which element is a liquid at room temperature? Give a reason. (1mk)
Act of the second secon
The state of the s
b) Explain why the beiling point of iodine is much higher than that of chlorine. (2mks)
Q ^{3Q}
26. In an experiment, dry hydrogen gas was passed over heated lead (II) oxide as shown in the
diagram below.
an hydrous gobalt chlorideExcess
Lead (II) oxide hydrogen
burn
Dry XXX
hydrogen gas
Heal
State and explain the observations made in the combustion tube. (2mks)
27. Hydrated cobalt (II) chloride exists as pink crystals and anhydrous cobalt (II) chloride is a
blue powder. Describe a laboratory experiment that can be used to show that the action of heat
on hydrated Cobalt (II) chloride is a reversible reaction. (3mks)

28. The figure below shows an energy cycle;

30. During the electrolysis of aqueous silver nitrate, a current of 5.0A was passed through the electrolyte for 3hrs.

a)Write the equation for the reaction that took place at the anode. (1mk)

b) Calculate the mass of silver deposited. (Ag=108, IF=96500C) (2mks)
62 g
b) Calculate the mass of silver deposited. (Ag=108, IF=96500C) (2mks)
, di ^X
₹\$
b) Calculate the mass of silver deposited. (Ag=108, IF=96500C) (2mks)
LCS.

ROF More Free Kest Past pagers visit with free kest pagers look