Name \qquad Index Number \qquad
Candidate's Signature \qquad
Date \qquad

121/2

MATHEMATICS

Paper 1

JULY/AUGUSTV 2013
$21 / 2$ hours
SUB®KIA DISTRICT JOINT ASSESSMENT
Kenya Certificate of Secondary Education
MATHEMATICS

Paper 1

$21 / 2$ hours

Instructions to Candidates

1. Write your name and index number in the spaces provided above.
2. Sign and write the date of examination in the spaces provided above.
3. This paper consists of TWO sections: Section I and Section II.
4. Answer ALL the questions in Section I and only five questions from Section II.
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
7. Marks may be given for correct working even if the answer is wrong.
8. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.
9. This paper consists of $\mathbf{1 3}$ printed pages.
10. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For examiner's use only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

17	18	19	20	21	22	23	24	Total

SECTION A: ANSWER ALL QUESAYONS IN THIS SECTION

1. Evaluate

$$
\begin{aligned}
& 12 / 17 \text { of }\left(1^{3} / x^{2}+5 / 8 x^{2 / 3}\right)
\end{aligned}
$$

3. Two lines L_{1} and L_{2} intersect at a point P. L_{1} passes through the points $(-4,0)$ and $(0,6)$. Given that L_{2} has the equation: $y=2 x-2$, find, by calculation, the coordinates of P.
4. The length of a rectangle is $(3 x+1) \mathrm{cm}$, its width is 3 cm shorter than its length. Given that the area of the rectangle is $28 \mathrm{~cm}^{2}$, find its length
(3 marks)
5. Simplify the expression $\quad \frac{15 a^{2} b-2 P^{2} 0 b^{2}}{3 a^{2}}$
6. Two matrices A and B are such that $A=\left[\begin{array}{ll}k & 4 \\ 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 2 \\ 3 & -4\end{array}\right]$

Given that the determinant of $\mathrm{AB}=10$, find the value of k .
(3 marks)
8. Line BC below is a side of a trianefe ABC and also a side of a parallelogram BCDE .

Using a ruler and a pair of compasses only construct:
(i) The triangle ABC given that $\angle \mathrm{ABC}=120^{\circ}$ and $\mathrm{AB}=6 \mathrm{~cm}$
(ii) The parallelogram BCDE whose area is equal to that of the triangle ABC and point E is on line $A B$ (3marks)
9. Water and ethanol are mixed such that the ratio of the volume of water to that of ethanol is 3: 1. Taking the density of water as $1 \mathrm{~g} / \mathrm{cm}^{3}$ and that of ethanol as $1.2 \mathrm{~g} / \mathrm{cm}^{3}$, find the mass in grams of 2.5 litres of the mixture.
10. A Kenyan bureau buys and sellseforeign currencies as shown below

A tourists arrived inKenya with 105000 Hong Kong dollars and changed the whole amount to Kenyan shillings. While in Kenya, she pent Kshs 403897 and changed the balance to Japanese Yensbefore leaving for Tokyo. Calculate the amount, in Japanese Yen that she received.
(3 marks)
11. Point T is the midpoint of a straight line $A B$. Given the position vectors of A and T are $i-j+k$ and $2 i+1 \frac{1}{2} k$ respectively, find the position vector of B in terms of i, j and k .
(3marks)
12. Solve the following inequalities and represent the solutions on a single number line:

$$
\begin{gathered}
3-2 x<5 \\
8 \leq-3 x+4
\end{gathered}
$$

(3marks)

13. Solve the equation $\log (x+24)-2 \downarrow \operatorname{cog}^{2} 3=\log (9-2 x)+2$

14. 畣he figure below represents below represents a prism of length 7 cm

Draw the net of the prism

15. The marked price of a car in a deader's shop was Kshs 450,000. Wekesa bought the car at 7% discount. The dealer still mades arof of 13%. Calculate the amount of money the dealer had paid for the car.
16. The size of each interior angle of a regular polygon is four times the size of the exterior angle. Find the number of sides of the polygon.

SECTION B: ANSWER ANY FIVE dQUESTIOS IN THIS SECTION

17. In the figure below DA^{2} is a diameter of the circle ABCDE centre O , radius 10 cm . $\mathrm{AB}=\mathrm{BC}$ and angles $\mathrm{AC}=36^{\circ}$

a) Giving reasons, find the size of the angle;
(i) CDB;
(2mks)
(ii) DBC
(2mks):
(iii) DOC
(2mks)
(iv) OCA
(2mks)
(v) DEB
(2mks)
18. (a) Complete the table below for the missing values of y, correct to 1 decimal place.

X	0^{0}	30^{0}	60^{0}	90^{0}	120°	150^{0}	180°	210^{0}	240°
$2 \operatorname{Cos}\left(1 / 2 \mathrm{X}-30^{\circ}\right)$			2.00		1.73			0.52	
$2 \operatorname{Cos} 2 \mathrm{X}^{\circ}{ }^{\circ}{ }^{\circ}$				-2.00			2.00		-1.00

(b) aÓn the same axes, draw the graphs of $y=2 \operatorname{Cos}\left(1 / 2 \mathrm{X}-30^{\circ}\right)$ and $\mathrm{y}=2 \operatorname{Cos} 2 \mathrm{X}^{\circ}$ e^{0} for $0^{0} \leq x \leq 240^{\circ}$.
Take the scale 1 cm for 30° on the x - axis 1 cm for 0.5 units on the y - axis
(5 marks)

(c) Use the graph to solve the equations:
(i) $2 \operatorname{Cos}\left(1 / 2 \mathrm{X}-30^{\circ}\right)=1.1$
(ii) $\operatorname{Cos} 2 \mathrm{X}^{\circ}-\operatorname{Cos}\left(1 / 2 \mathrm{X}-30^{\circ}\right)=0$
(3 marks)
19. A bus left Mombasa and travefed towards Nairobi at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. after $21 / 2$ hours; a car left Mombasa and traveled along the same road at an average speed of $100 \mathrm{~km} / \mathrm{hr}$. If the distance between Mombasa and Nairobi is 500 km , Determine
(a) (i) The distancer ${ }^{\circ}$ of the bus from Nairobi when the car took off
(ii) The distance the car travelled to catch up with the bus
(4 marks)
(b) Immediately the car caught up with the bus, the car stopped for 25 minutes. Find the new average speed at which the car traveled in order to reach Nairobi at the same time as the bus.
(4 marks)
/
20. The coordinates of triangle $\mathrm{P} Q \mathrm{R}^{2^{5}}$ are $\mathrm{P}(-1,3), \mathrm{Q}(-3,4)$ and $\mathrm{R}(-2,1)$. Draw triangle PQR

a) Draw $\triangle \mathrm{P}{ }^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{2} \mathrm{R}^{2}$ the image of PQR under a rotation of $+90^{\circ}$ about $(0,0)$. (2mks)
b) Draw $\Delta \times P$ " Q " R " the image of P ' Q ' R ' under a reflection in the line $y=-x$.

e) Calculate the area of the quadrilateral Q"Q"'Q'.
(1mks)
21.. a) Using trapezoidal rulesestimate the area under the curve $Y=1 / 2 x^{2}-2$ for $0 \leq x \leq 6$. use six strips. $4, y^{e^{e^{x^{c^{c}}}}}$ (5mks)
b) (i) Assuming that the area determined by integration to is the actual area, calculate the percentage error in using the trapezoidal rule. (5 mks)
22. The diagram below representsia pillar made of cylindrical and regular tetrahedral parts. The diameter and height of the cylindrical part are 1.4 m and 1 m respectively. The side of the regular tetrahedral faee is 0.5 m and its height is 3.2 m .

a) Calculate the volume of the :
i) Cylindrical part
(2marks)
ii) Tetrahedral part
(3marks)
b) An identical pillar is tebe built but with a hollow cylindrical region whose crosssection radius is 0.2 fr . The hollow region extends from top of the tetrahedral part to the base of thereylindrical part.
(i) Calculate the volume of the pillar (3marks)
(ii) The density of the material to be used to make the pillar is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the mass of the new pillar.
(2marks)
23. Four towns P, R, T and S are seeieh that R is 80 km directly to the north of P and T is on a bearing of 290° from P ata distance of 65 km . S is on a bearing of 330° from T and a distance of 30 km . 内"

Using a scale of 1 cm to represent 10 km , make an accurate scale drawing to show the relation position of the towns.

(4marks)

Find:
(a) The distance and the bearing of R from T
(b) The distance and the bearing of S from R
(c) The bearing of P from S
24. A cylindrical water tank can beefilled to a depth of 2.1 metres by a pipe P in 2 hrs . Pipe Q takes 7hrs to fill the tank to the same depth. Pipe R can empty this amount of water in 6hrs.
(a) i) Starting with an empty tank, P runs alone for one hour. How many centimeters qu 5 ep will the water in the tank be?
ii) Having run for an hour in (i) above, Pipe P continues to run for additional 20 minutes after which it's turned off. The remaining two pipes are left open with pipe R left to run for 4 hours while pipe Q runs for 2 hours. What will the depth of water in the tank be?
(4marks)
b) If the tank was initially 6.5 m full and the three pipes are open, how long will it take to fill the tank such that only a third of the initial height of the tank remains empty?

