Name \qquad Index Number \qquad

Candidate's Signature \qquad
Date \qquad
121/2
MATHEMATICS

Paper 2

JULY/AUGUST 2013
$21 / 2$ hours

SUBUKIA DISTRICT JOINT ASSESSMENT

Kenya Certificate of Secondary Education
 MATHEMATİCS

Papere ${ }^{2}$

$21 / 2$ ก̂́ours

Instructions to Candidates

1. Write your name and index number in the spaces provided above.
2. Sign and write the date of examination in the spaces provided above.
3. This paper consists of TWO sections: Section I and Section II.
4. Answer ALL the questions in Section I and only five questions from Section II.
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
7. Marks may be given for correct working even if the answer is wrong.
8. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.
9. This paper consists of $\mathbf{1 2}$ printed pages.
10. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For examiner's use only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

17	18	19	20	21	22	23	24	Total

Grand
Total

SECTION A 50 MARKS

Answer all the questions in this section

1. Use logarithms table to evaluate.
2. $e^{e B y}$ rationalizing the denominator, evaluate the following surds

$$
\frac{\sqrt{2}}{\sqrt{2}-\sqrt{3}}-\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}
$$

3. Make H the subject of the formula

$$
\frac{f \sqrt{H}}{d}=\sqrt{\frac{a^{2}-k}{H}}
$$

4. Ken was asked to truncate $\frac{7}{9}$ to 3 decimal places. He truncated it instead to 3 decimal places.. Calculate the percentage error resulting from the truncating. (3mks)
5. Two bags M and N are on a desk. Bag M contains 6 red pens and 4 black pens; bag N contains 2 red pens and 8 black pens. A bag is chosen at rand and two pens drawn from it, one at a time without replacement. Find the probability officking two pens of the same colour.
6. Expand $\left(a^{x}+3 x\right)^{7}$ up to x^{3}, hence use the expansion to estimate the value of $(1.3)^{7}$ correct to three decimal places.
$3 m k s$
7. If the length of a rectangle is increased in the ratio $7: 3$ and the width decreased in the $2: 5$, find whether the area is increased, and what ratio.
8. The points A and B are $(2,10)$ and $(-4,8)$ respectively. If $A B$ is a diameter of the circle, find the equation of this circle. $3 m k s$
9. A circle of radius 15 cm is divided into ten equectors. In each sector, find:
a. The area of the triangle
10. (a)Find the inverse of the Matrix $\left(\begin{array}{ll}3 & 1 \\ 2 & -1\end{array}\right)$
(b) Hence solve for x and y using the matrix method given that $\begin{aligned} & 3 x+y=4 \\ & 2 x-y=1\end{aligned}$
11. A particle moves in a straight line such that ite Calculate the distance covered by the paticle in the $7^{\text {th }}$ second.
12. Solve the following equations for values of θ from 0° to 360°

$$
3 \cos ^{2} \theta-7 \cos \theta=6
$$

$3 m k s$
13. Find the value of y in the figure below.
(2mks)

14. Find the sum to 20 terms of the series

$$
\log 2+\log 4+\log 8+\log 16+\ldots \ldots
$$

Give your answer to 3 significant figures.
15. A quantity \mathbf{P} is partly constant and partly varies as the cube of \mathbf{Q}. When $\mathbf{Q}=1, \mathbf{P}=23$ and when $\mathbf{Q}=2, \mathbf{P}=44$. Find the value of \mathbf{P} when $\mathbf{Q}=5$.
16. Grade A tea costs Ksh 100 per kg while grade B costs ksh 150 per kg. Find the ratio in which the two grades should be mixed to get a mixture worth ksh. 140 per kg.

2mks

SECTION B
 50 MARKS

Answer any five questions in this sectioniin the spaces provided

17.

Income tax is charged on annual income at the rates shown below.

Taxable Income K£ $1-1500$	Rate (shs per K£) 2
$1501-30^{5}$	3
$e^{36901-4500}$	5
c c $^{\text {人̀ }}$ 4501-6000	7
6001-7500	9
7501-9000	10
9001-12000	12
Over 12000	13

A certain headmaster earns a monthly salary of Ksh. 8570. He is housed in the school and as a result, his taxable income is 15% more than his salary. He is entitled to a family tax relief of Kshs. 150 per month.
(a) How much tax does he pay in a year.
(6 mks)
(b) From the headmaster's salary the following deductions are also made every month;
W.C.P.S
2% of gross salary
N.H.I.F

Kshs. 20
House rent, water and furniture charges Kshs. 246
Calculate the headmaster's net salary.
18. In the figure below C is a point on AB such that $B A=3 B C$ and D is the mid-point of OA . OC and BD intersect at X Given that $O A=a$ and $O B=b$

(a) Write down in terms of a and b the vectors.

$$
\text { (i) } \quad A B
$$

(ii) $O C$
(iii) $B D$
(b) If $B X=\mathrm{h} . B D$, express $O X$ in terms of a, b and h
(c) If $O X=\mathrm{k} O C$, find h and k
(d) Hence express $O X$ in terms of a and b only.
19. a) Fill the blank spaces in the table below for ${ }^{\text {ate }}$ curve $y=-x+4 x^{2}-6+x^{3}$ for $-5 \leq x \leq 2$.

b) a) Draw thegeraph of $y=-x+4 x^{2}-6+x^{3}$ for $-5 \leq x \leq 3$.
(3mks)

b) Use your graph to solve the following equations
i) $x^{3}+4 x^{2}-x-6=0$
ii) $-3 x^{3}-12 x^{2}+15=0$
iii) $-\mathrm{x}^{3}-4 \mathrm{x}^{2}+2 \mathrm{x}+9=0$
(2mks)
20. The figure below shows a square $A B C D$ point X, is vertically above middle of the base $A B C D . A B=10 \mathrm{~cm}$ and

(2mks)
(b) the height of the pyramid
(2mks)
(c) the acute angle between VB and base $A B C D$.
(2mks)
d) the acute angle between BVA and ABCD.
(2mks)
e) the angle between AVB and DVC.
(2mks)
21. The positions of two towns on the surface ofthe earth are given as $A\left(30^{\circ} \mathrm{S}, 20^{\circ} \mathrm{W}\right)$ and $\mathrm{B}\left(30^{\circ} \mathrm{S}, 80^{\circ} \mathrm{E}\right)$ Find
a) the difference in longitude
a) theedistance between the two towns along a parallel of latitude in
(i) 援成 (take the radius of the earth as 6370 km and $\pi={ }^{22} / 7$)
(ii) nm

2mks
c) Find the local time in town B when it is $1: 45 \mathrm{pm}$ in town A.

3mks
22. The marks of 50 students in a mathematics, test were taken from a form 4 class and recorded in the table below.

Mark (\%)	21-30	31-40	$41-e^{50}$	51-60	61-70	71-80	81-90	91-100
Frequency	2	5		9	11	8	5	3

(a) On the grid provided, draw a cumulative frequency curve of the data. (3mks)

Take: 1 cm to represent ${ }^{5} 5$ students on the vertical scale and 1 cm to represent 10 marks on the horizontal scale.

(b) From your curve in (a) above
(i) Estimate the median mark.
(ii) Determine the Interquartile deviation.
(iii) Determine the $10^{\text {th }}$ to $90^{\text {th }}$ percentile range.
(c) It is given that students who score over 45 marks pass the test. Use your graph in (a) above to estimate the percentage of students that pass.
23. Use ruler and a pair of compasses only in thisquestion
a) Construct triangle ABC sugh that $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{AC}=\mathrm{BC}$ and angle $\mathrm{ACB}=135^{\circ} 4 \mathrm{mks}$
b) On one side only construet the locus of P such that:
i) $\angle \mathrm{APB}=67.5^{0}$

1 mk
ii) area of triangle, $\mathrm{A} \mathrm{P}^{\mathrm{B}}=9 \mathrm{~cm}^{2}$

3 mks
c) i) Locate P_{1} and P_{2} the two possible positions of P which satisfy the two conditions above 1 mk
ii) Measure the distance between P_{1} and P_{2}. 1mk
24. A transport company required to transport 720 passengers. It has two kinds of vehicles, Buses which carry 60 passengers each, and lorries which carpicarry 90 passengers each. Only 10 buses and 8 Lorries are available.
a) Write down the inequalities thät satisfy the facts given above. Let x be the number of buses and y be the number of lorries.

(ii) Given that the cost of running a bus is Ksh. 1,000 and that of a lorry is Ksh. 200, What is the least number of vehicles that can be used. (2mks)
(iii) What is the minimum cost of transporting these passengers? (2mks)

