AKCBEPASTRARETS.COM Name: LSit www.teel Class: 233/2 **CHEMISTRY** PAPER 2 3 THEORY FOR MORE FREE KCSE Past TIME – 2HRS

Index Number:

SUPA JET Mock Examination July, 2013

INSTRUCTIONS TO THE CANDIDATES:-

- Write your **Name** and **Index number** in the spaces provided. ٠
- Answer *all* the questions in the spaces provided. •
- Mathematical tables and electronic calculators may be used ٠
- All working **MUST** be clearly shown where necessary. •

For Examiners Use Only

Question	Maximum score	Candidate's score
1	10	
2	12	
3	12	
4	11	
5	13	
6	11	
7	11	
Total	80	

The grid below shows part of the periodic table. Use it to answer the questions that follow. The letters do not represent actual symbols. (10 marks)

]	4 ⁴					
		white .			S	U	V	
	Р	R			Т	X	W	
	Q							
		2 ^{.2}						
	2 th	<u> </u>						
	(a) Whic	ch of the element	s has the highe	est atomic 1	radius?	Explain.		(2 marks)
				•••••	•••••	• • • • • • • • • • • • •	••••	
e					•••••			••••••
NOT	(b) Idant	ify the most read		l Evoloin	•••••	• • • • • • • • • • • • •	•••••	(2 marks)
\$ ⁰	(b) Ident	fry the most read	ctive non-metal	г. Ехргані.				(2 marks)
		•••••		•••••	•••••	• • • • • • • • • • • • •	•••••	
					•••••			
					•••••	• • • • • • • • • • • • • • •	•••••	(1 1)
	(c) Com	pare the atomic i	adius of P and	K.				(1 mark)
					•••••			
	(d) Give	the formula of c	ne stable ion w	vith an elec	ctron arr	rangemen	nt of 2.8	which is:
	(1)	Negativity cha	arged divalent	10 n .				(2mks)
	·····				•••••	• • • • • • • • • • • • •	•••••	
	(11)	Positively cha	rged monovale	ent.				
	(a) C iver	n that the mass r	umbor of Wig	40 Write	down th			
		n mat me mass n	uniber of wirs	40. white	uowii u	le compo	DSILIOII OI	(1 mark)
					•••••			••••••
	(f) Write	e the formula of	the compounds	s formed be	etween.			
	(i)	Element R and	d X.					(1 mark)

- (ii) Give one property of the structure formed when R and X bond. (1 mark)
- 2. The flow chart below shows how a fertilizer can be manufactured. Use it to answer the questions that follow.

			tpapers.com	
			(f) Name the methods by which pollution is controlled in contact p	rocess
			(1) I value are meanous of Somen pontation is control in contact p	(1 mark)
		(g) W	hich industry can be set next to the plant	(1mark)
			When hydrogon sulphide gas was hubbled into an equally solut	ion of Iron (III)
		11.	chloride, a vellow precipitate was deposited	
	4	25 ⁵¹ - 2 ²¹	(i) State another observation that was made.	(1 mark)
More Fre	e S		(ii) Write an equation for the reaction that took place.	(1 mark)
\$ ⁰		III.	 (a) Explain why old newspapers slowly turn brownish when expose sunlight. 	d to air and (1 mark)
			(b)Describe a chemical test that can be used to distinguish sodium sodium sulphite.	sulphate and (2 marks)
	3.	(a) W	hat is solubility as used in chemistry?	(1 mark)
		 (b) By	y using the same axes, plot graphs of solubility of substances X and Y	against

(b) By using the same axes, plot graphs of solubility of substances X and Y against temperature from the data below. (5 marks)

Temp (⁰ c)	15	25	35	45	55	65	75
Sol. of X (g/100 gH ₂ O)	26	38	53	72	98	124	155
Sol of Y (g/100 gH ₂ O)	35.8	36.2	36.6	37	37.4	38	38

(e) 40g of X solution saturated at 50° C are cooled to 15° C. What mass of solid will separate out? (1 mark)

www.

4. Excess marble chips (CaCO₃) was put in a beaker containing 100cm³ of dil. Hcl. The beaker was then placed on a balance and the total loss in mass recorded after every 2 minutes as shown in the table below.

Time (min)	0	2	4	6	8	10
Total loss is mass (g)	0	1.8	2.45	2.95	3.2	3.3

For More Free

(a) Why was there loss in mass? (1 mark) (b) Calculate the average rate of loss in mass between: (2mks)0 and 2 minutes. (i) _____ (ii) 6 and 8 minutes. (iii) Explain the difference in the average rates of reaction in (i) and (ii) above(1 mark) (c) Write the equation for the reaction that takes place in the beaker. (1 mark)(d) State two ways in which the rate of the reaction above could be increased. (2 marks) (e) The solution in the beaker was evaporated to dryness. Explain what would happen if the open beaker and its contents were left in the laboratory overnight. (2 marks)

		stpapers.com	
	(c) Draw	two possible structure of compound L.	(2 marks)
	(d) Worite	Reacts vite it when the second	(1
ব	CC ¹ (1)	The complete combustion of substance M	(1 mark)
FOT NOTE FTEE	(ii)	Formation of substance R.	(1 mark)
	(e) Name Reage Condi	the condition and reagent in step III.	(2 marks)
	(f) Draw	the structure formula of compound N. (1	l mark)
	(g) Chlori (i)	ine is used to prepare vinylchloride (chloroethene), ($CH_2 = CHC$ State why chloroethene, undergoes addition polymization.	Cl). (1 mark)
	 (ii)	Name the polymer formed	(1 mark)
	(iii)	Complete the following equation to show the two monomers of polymerization.	combined during the (1mark)
		$CH_2 = CHCl + CH_2 = CHCl \longrightarrow$	

	Volume of water in the beaker = 500 cm^3 Initial temperature of water = 12^0C Final temperature of water = 31.5^0C Mass of ethanol burnt = 1.50g Density of water = 1 g/cm^3 Specific heat capacity = $4.2 \text{ jg}^{-1}\text{K}^{-1}$ (a) Define standard heat of combustion.	(1 mark)
	(b) Calculate the heat required to raise the temperature of the water from	12 ⁰ C to 31.5 ⁰ C. (2 marks)
•	(c) Find the molar enthalpy of combustion of ethanol.	(2 marks)

.....

reapers.com	
(d) An accurate value for H_{∞}^{ϕ} ethanol is -1368 kJmol ⁻¹ . State two sou	rces of errors
for the low figure obtained.	(2 marks)
s, ree	
and the second	•••••
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(e) Praw an energy level diagram for the combustion of ethanol.	(2 marks)
ACSE Past	
Note Free	
* ^{ot}	

	(f) Calculate the heating value of ethanol. (C = 12, H = 1, O = 16	(2 marks)
7.	<ul> <li>The extraction of copper from copper pyrites is done in three main stages bef is obtained.</li> <li>(i) The concentration of the ore to remove impurities.</li> <li>(ii) Roasting of the ore and reduction.</li> </ul>	ore pure copper
	(iii) Purification of blister copper.	
	(a) Name the methods used to putify the ore.	(1 IIIark)
	(b) One of the equation in stage (ii) to form blister copper is (c) $CU_{2}S + 2CU_{2}O_{1} \longrightarrow CU_{2} + SO_{2} \longrightarrow CU_{2}$	
	$CO_2 S + 2CO_2 O(s) + CO(s) + SO_2(g)$	
	I. Name the reducing agent.	(1 mark)

		con	
		x Papert	
	II.	Explain why this type of Copper is called "blister copper".	(1 mark)
		te	
		way.	
	(d) One o I.	of the uses of copper is to make electrical conductors and it must be Draw a diagram to illustrate how blister copper is purified.	99.99% pure. (2 marks)
			· · · ·
	, Q	a ^Q	
	Pas'		
Ą	CC, K		
\$1,00			
more			
\$ ^{0[°]}	II.	State one other uses of copper.	(1 mark)
	(e) (i)	State two properties of aluminium that makes if possible to be use overhead electric cables.	d in making (2 marks)
	(ii)	A typical electrolysis cell uses a current of 40,000 amperes. Calcukes of Aluminium produced in ten hours. (IF = 96500C, Al = 27)	late the mass in (3 marks)
	•••••		
	•••••		
	•••••		
			•••••