SUPAJET
 JOIENT ASSESSMENT EXAMINATION
 July/August 2013
 CHEMISTRY DEPARTMENT

Name \qquad Class \qquad Class No. \qquad
233/3
CHEMISTBY
PAPER ${ }^{3}$
PRACTICAL
TIMÉ- $2^{1} / 4 \mathrm{HRS}$.

Index Number: \qquad

INSTRUCTIONS.

Answer ALL the questions in the spaces provided in the question paper.
You are NOT allowed to start working with the apparatus for the first 15 minutes of the $21 / 4$ hours allowed for this paper.
This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
Electronic calculators may be used
All working must be clearly shown shown where necessary.

FOR EXAMINER'S USE ONLY.

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
$\mathbf{1}$	21	
$\mathbf{2}$	11	
$\mathbf{3}$	8	
Total Score	$\mathbf{4 0}$	

Q1. You are provided with:

- Aqueous sulphuric acidid labelled solution A
- Solution B containifig 8.0 g per litre of sodium carbonate.
- Solution C contaíning sodium hydroxide.

You are requiredsto determine the concentration of solution A, and use the diluted solution ta ${ }^{\text {x }}$ find the concentration of solution C .

Procedure1 ${ }^{j}$

Using a pipette, place $25.0 \mathrm{~cm}^{3}$ of solution A into a 250 ml volumetric
flask. Ader distilled water to make $250 \mathrm{~cm}^{3}$ of solution - Label this solution D. Place solution ${ }^{1} \mathrm{D}$ in a burette. Clean the pipette and use it to place $25.0 \mathrm{~cm}^{3}$ of solution B inter ${ }^{5}$
\& cónical flask. Add 2 drops of methyl orange indicator provided and titrate with solution D. Record your results in the table below. Repeat the titration two more times and complete the table.

	I	II	III
Final burette reading			
Initial burette reading			
Volume of solution D used $\left(\mathrm{cm}^{3}\right)$			

(4marks)
a) Evaluate the:
i) Average volume of solution D used.
ii) Concentration of sodium carbonate in solution B.
(R.A.M. $\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$)
b) Write the equation of the reaction that occurs (1mark)
c) Calculate the :
i) Moles of sodium carbonate reacting with sulphuric acid. (1mark)
ii) Concentration of sulphuric acid in solution D. (2 marks)
iii) Concentration of sulphuric acid in solution A.
(2 marks)

Procedure 2.

Place solution D in a burette. Clean the pipette and use it to place $25.0 \mathrm{~cm}^{3}$ of solution C into a conical flask. Add 2 drops of phenolphthaleinindicator provided and titrate with solution D. Record your results in the table below. Repeat the titration two more times and complete the table.

	I	II	III
Final burette reading			
Initial burette reading			
Volume of solution D used $\left(\mathrm{cm}^{3}\right)$			

e) Write the equation of the reaction that occurs (1mark)
f) Calculate the :
i) Moles of sodium hydroxide reacting with sulphuric acid. (1mark)
iv) Cōncentration of sodium hydroxide in solution C in moles per litre.
(2 marks)

Q2. You are provided with:
Solution F, which is 1 M sodium Hydroxide solution,
Solution G, which is 1 M hydrochloric acid solution.
You are required to find the Heat of neutralisation of sodium hydroxide.

Procedure:

Measure $50 \mathrm{~cm}^{3}$ of solution F into a plastic beaker and record its temperature.
Measure $50 \mathrm{~cm}^{3}$ of solution G and record its temperature.
Pour solution F into the beaker containing solution G.
Stir thoroughly and record the highest temperature attained by the mixture.
Record your results in the table below.

Temperature of $\mathrm{A}\left({ }^{\circ} \mathrm{C}\right)$			
Temperature of $\mathrm{B}\left({ }^{\circ} \mathrm{C}\right)$			
Highest temperature $\left({ }^{\circ} \mathrm{C}\right)$			
$(3$ marks $)$			

(Show clearly how you got your answer)
a) Calculate
i) The Heat evolved in the reaction (2 marks) (Take the specific heat cappacity \& density of water to be $4.2 \mathrm{Kj} / \mathrm{Kg} / \mathrm{K} \& 1 \mathrm{~g} / \mathrm{cm}^{3}$)
ii) The number of moles of sodium hydroxide that react (1 mark)
iii) The molar enthalpy of the reaction (2 marks)
b) Write a thermo-chemical equation of the reaction that occurs (1mark)

Q3. You are provided with liquiel P; carry out the tests described below.
a) Place a little amount of liguiid P in a metallic spatula and ignite it in a Bunsen burner flame.

Observation (s)		Inferences	
	(1 mark)	(1 mark)	

b)Divide the remaining liquid into 3 portions.
i) To the first portion add three drops of acidified potassium dichromate

Observation	Inferences

ii) Add an equal volume of distilled water to the the $2^{\text {nd }}$ portion followed bya spatula-end full of sodium carbonate

Observation	Inferences

iii) Add about $3 \mathrm{~cm}^{3}$ of ethanoic acid to the $3^{\text {rd }}$ portion followed by 3 drops of sulphuric acid and warm.

Observation	Inferences

