Name. $\qquad$ $e^{0}$ Class $\qquad$

Index Number $\qquad$ Class Number $\qquad$

## FORM 4

MATHEMATICS PAPER 1
SURA JET MOCK ${ }^{\text {S }}$ JULY 2013
TIME: $21 ⁄ 2$ HOLDS

PUPA JET<br>Mock Examination<br>Mathematics Paper 1<br>$21 / 2$ Hours

## Instructions to candidates

1. Write your name, index and class number in the spaces provided above.
2. The paper consists of two sections: section I and section II.
3. Answer all the questions in section I and any five in section II
4. Section I has sixteen questions and section two has eight questions
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question
7. KNEC Mathematical table and silent non-programmable calculators may be used.

For examiner's use only
Section I

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Section II

| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |

Grand
Total

This paper consist of $\mathbf{1 5}$ printed copies candidates should check the question paper to ensure that all pages are printed as indicated and no question is missing.

## Answer all questions in this sectiquf. <br> 

## SECTION I

1. Without using a calculator or mathematical table evaluate:
$\frac{21 / 5+2 / 3 \text { of } 33 \times 4-41 / 6}{11 / 4-22 / 541 / 3+31 / 4}$
2. Simplify:

$$
\left[\frac{a^{3}-a b^{2}}{a^{4}-b^{4}}\right]^{-1}
$$

3. A straight line passes through the point $(-3,-4)$ and is perpendicular to the line whose equation is $3 x+2 y=11$ and intersects the $x=$ axis and $y$-axis at points $A$ and $B$ respectively. Find the length of AB.
4. Evaluate using squares, cubes andieciprocal tables.

5. Given that $2-5 x \leq \frac{1}{3}(x+7) \leq 6-\frac{1}{3} x$ and that $x$ is an integer, find the sum of the smallest and the largest value of $x$.
(3 marks)
6. Makau and Kilonzo live 20 km apart. Makau leaves home at 10:00 am and walks to meet Kilonzo who started walking at 9:30 am to meet Makau. The speed of Makau and Kilonzo are in the ratio of $3: 4$. If they met at 11:30 am find their speeds.
(3 marks)
7. In the figure below, lines $A B$ and $e^{e^{5}}$ are parallel.

csif the area of the shaded region is $36 \mathrm{~cm}^{2}$, find the area of triangle CXY.
(3 marks)
8. Given that $\log \mathrm{a}=0.30$ and $\log \mathrm{b}=0.48$ find the value of $\log \frac{b^{2}}{a}$.
(2 marks)
9. In the figure below $O$ is the centre of the circle diameter $A B . \angle A X P=90^{\circ}, A X=4 \mathrm{~cm}$ and $P X=10 \mathrm{~cm}$. Calculate the radius of the semi-circle.

10. The gradient function of a curve that passes through the point $(-1,-1)$ is $2 x+3)$. Find the equation of the curve.

(3 marks)
11. Evaluate:
(3 marks)

$$
\frac{\left(\frac{1}{27}\right)^{1 / 3} \times(256)^{1 / 2} \times 3^{6}}{(729)^{-1 / 3} \times 72^{2}}
$$

12. Estimate the area bounded by the curve $\mathrm{y}=\frac{1}{2} x^{2}+1, x=0, x=3$ and the $x$-axis using the mid-ordinate rule. Use three strips. (3 marks)
13. ABCD is a rhombus. The measureof angle ABC is $150^{\circ}$. The diagonals of the rhombus intersect at $E$. The shorter diagofthal measures 10 cm . Calculate the length of the sides of the rhombus to the nearest integer hence calculate the area of the rhombus.
14. Three police posts are such that Q is on a bearing of $210^{\circ}$ and 12 km from P while R is on a bearing of $150^{\circ}$ and 8 km from P .
(a) Using a suitable scale, draw a diagram to represent the above situation.
(b) From the scale drawing determine:
(i) the bearing of Q from R
15. A student expands $(x-y)^{2}$ incorrefly as $x^{2}+y^{2}$. Find his percentage error if he used this incorrect expansion for $\mathrm{x}=4$ and $\mathrm{y}=-5$. Give your answer correct to 2 d.p. ( 3 marks)

16. A pulley is made up of two wheels of radii 6 cm and 9 cm respectively and the distance between their centres is 18 cm .


If a belt passes round the two pulleys, find its length.

## SECTION II

## Answer any five questions in this section.

17. A circular lawn is surrounded by a path of uniform width of 7 m . The area of the path is $21 \%$ that of the tawn.
(a) Calculate the ${ }^{\text {radadius }}$ of the lawn.
(b) Given further that the path surrounding the lawn is fenced on both sides by barbed wire on posts at intervals of 10 metres and 11 metres on the inner and outer sides respectively. Calculate the total number of posts required for the fence.
(4 marks)
(c) Calculate the total cost of the posts if one post costs sh 105.
(2 marks)
18. A frustum with a regular pentagonail base is such that its top is of side 12 cm and bottom is of side 24 cm . If its perpendiculat $W_{\text {eight }}$ is 20 cm . Calculate:
(a) The length of the slant edge.
(b) The volume of the frustum.
19. Four trucks A, B, C and D take 1adays to transport 42,000 bags of maize to a depot. However, trucks A and B together take 30 days to transport the same number of bags while trucks C and D together takel 15 days. Truck A carries $11 / 2$ times the number of bags B carries and C carries $1^{4} / 5$ times as much as $D$.
(a) Determine the number of bags of maize transported by each truck per day. (5 marks)

(b) All the trucks A, B C and D work together for 5 days, after which truck C and D are withdrawn. A and B work together for another 5 days after which truck A breaks down. How long does truck B take to complete the rest of the remaining bags? (5 marks)
20. Eunice bought some oranges worthiksh 45, while Sharon spent the same amount of money but bought the oranges at a disccount of 75 cents per orange.
(a) If Eunice bought an orange at Sh x, write down a simplified expression for the total number of oranges
(b) If Sharon bought 2 more oranges than Eunice. Find how much each spent on an orange.
(5 marks)
(c) Find the total number of oranges bought by Eunice and Sharon.
(2 marks)
21. (a) The figure shows a velocity tione graph of an object which accelerates from rest to a velocity $\mathrm{Vm} / \mathrm{s}$ then decelerafes to rest in a total time of 54 seconds. If the whole journey is 810 m ,

(i) Find the value of V.
(ii) Find the deceleration given the initial acceleration is $12 / 3 \mathrm{~m} / \mathrm{s}^{2}$.
(2 marks)
(b) A bus left town x at 10:45 am and travelled towards town Y at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. A car left town X at 11:15am on the same day and travelled along the same road at an average speed of $100 \mathrm{~km} / \mathrm{hr}$. The distance between town X and town Y is 500 km .
(i) Determine the time of day when the car overtook the bus.
(ii) Both vehicles continued towards town Y at their original speeds. Find how long the car had to wait in town Y before the bus arrived.
(3 marks)
22. The velocity of a particle $t$ secondsafter passing a fixed point $O$, is given by $V=a t^{2}+b t m / s$, where $a$ and $b$ are constants. Given that its velocity is $2 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=1 \mathrm{sec}$ and it returns to 0 when $\mathrm{t}=4.5 \mathrm{secs}$, calculate ${ }^{e} e^{e}$
(a) The values of $a$ and $b$
(b) Hence find;
(i) The values of $t$ when the particle is instantaneously at rest.
(2 marks)
(ii) The total distance travelled by the particle during the first 4 seconds. (2 marks)
(iii) The maximum velocity attained by the particle.
(2 marks)
23. (a) Complete the table below for the function $y=-4-6 x+3 x^{2}+2 x^{3}$.

| x | -4 | -3. | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y |  |  |  |  |  |  |  |

(b) Draw the fraph of $y=-4-6 x+3 x^{2}+2 x^{3}$ for values fo $x$ from -4 to 2 . (3 marks)
(c) Use your graph to solve.
(i) $2 x^{3}+3 x^{2}-4 x-2=0$
(2 marks)
(ii) $4 x^{3}+6 x^{2}-12 x-8=0$
(2 marks)
24. A parallelogram OACB is such that $\mathbf{O A}=\mathbf{a}, \mathbf{O B}=\mathbf{b} . \mathrm{D}$ is the mid point of $\mathrm{BCOE}=\mathrm{hOC}$ and $\mathbf{A E}=k \mathbf{A D}$.
(a) Express the following.in terms of $\mathbf{a}, \mathbf{b}, \mathrm{h}$ and k .
(i) OC

(ii)

(1 mark)
(1 mark)

(iv) AE
(1 mark)
(b) Find the values of h and k .
(4 marks)
(c) Determine the ratios:
(i) $\mathrm{AE}: \mathrm{ED}$
(1 mark)
(ii) $\mathrm{OE}: \mathrm{OC}$
(1 mark)

