NAME: \qquad Index number:

CLASS: \qquad CLS NO \qquad

MÁTHEMATICS

${ }^{2}$ FORM FOUR - 2013
Paper 2
Time: $21 / 2$ hours

Instructions to candidates

1) Fill the spaces provided above.
2) The paper consists of two sections: section I and section II.
3) Answer all the questions in section I and any five in section II
4) Section I has sixteen questions and section two has eight questions
5) All answers and working must be written on the question paper in the spaces provided below each question.
6) Show all the steps in your calculations, giving your answers at each stage in the spaces below each question
7) Non-programmable silent electronic calculators and KNEC Mathematical tables may be used, except where stated otherwise.

For examiner's use only.
Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

17	18	19	20	21	22	23	24	Total		
									\quad	Grand
:---:										
Total	\quad									

1. Evaluate without using tables or a calculator

2. Find the value of the term independent of x in the expansion of (3mks)

$$
\left(3 x^{2}+\frac{1}{3 x}\right)^{6}
$$

3. Simplify the following giving your answer in the simplest form possible.
$\frac{2}{\sqrt{6}+\sqrt{3}} \quad \frac{5}{\sqrt{7}-\sqrt{5}}$

$$
\frac{\operatorname{Tan} 225-\cos 330}{\sin 210+\cos 840}
$$

5. Given that $\mathrm{a}=\mathrm{b}+\sqrt{b^{2}+c^{2}}$ make c the subject of the formular.
6. Two matrices A and B are such that

$$
A=\left(\begin{array}{ll}
K & 4 \\
3 & 2
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Given that the determinant of $A B=4$ find the image of triangle $A B C$ where $A=(2,0), B(3,2)$ and $C(3,4)$ under stretch, stretch factor K, parallel to the X axis.
(3mks)
7.a. Find the position vector ${ }^{\circ} \mathrm{C}$ of the centre of a circle C , whose equation is

$$
\begin{equation*}
2 x^{2}+2 y^{2}+4 x-6 y-26=0 \tag{2mks}
\end{equation*}
$$

b. If the circle passes through $P(3,2)$, use vector method to find the diameter of the circle.
(2mks)
8. The sum of the digits in a three digit number is nine. The tens digit is half the sum of the sum of the other two and the hundreds digit is half the units digit. Find the total value of the number.
(3mks)
9. Given that y is inversely proportional to x^{n} and β is the constant of proportionality and that $e^{*}=2$, when $y=12$, and $x=4$, when $y=3$, find the values of n and β.
10. Find the exact area of the region bounded by the curve $y=9 x-x^{3}$ and the x axis.
11. In the figure below, RP andeRQ are tangents to the circle centre O, radius $r \mathrm{~cm}$. OQ produced meefs PR produced at T . QT $=12 \mathrm{~cm}$ and $\mathrm{QR}=5 \mathrm{~cm}$ Calculate the radius ofte circle.
(3mks)

12. The figure below represents a right pyramid with a vertex V and a rectangular base, $A B C D$. $V A=V B=V C=V D=40 \mathrm{~cm}$.
$A B=30 \mathrm{~cm}$ and $B C=22 \mathrm{~cm} . \quad X$ is the mid-point of $B C$.
Calculate the size of the angle between planes VBC and ABCD (3mks)

13. Given that $\mathbf{a}=3 \mathbf{i} e^{-2 \mathbf{j}}+3 \mathrm{k}$ and $\mathbf{b}=\mathbf{2} \mathbf{i}-4 \mathbf{j}-3 k$

14. If $25 x^{2}+k+9$ is a perfect square find x
(2mks)
15. The figure below shows a cifcle centre O touching the vertices A, B, C of triangle $A B=8.8 \mathrm{~cm} C B C=5.4 \mathrm{~cm}$ and $A C=9.2 \mathrm{~cm}$.

Calculate the radius of the circle to the nearest whole number.
16. $X A Y$ is a tangent to the circle $A B C D$. $A D$ is parallel to the straight line CBY. Angle $A D C=114^{\circ}$, and $A B=B Y$

Calculate angles
i. $A B C$
ii. $B C A$
17. The following table shouvs individual rates of income tax Income K£ PA $e^{\text {e }}$, Rate (sh. Per K£)
1-4512
2
4513-9024
3
9025-73536
4
1353才-above
5
Mr. Kariuki lives in a company house for which he pays a nominal rent of Ksh. $61 \theta^{\prime \prime}$ per month. For taxation purpose, his basic salary is increased by $15 \% \%^{\partial} \mathrm{He}$ is insured and pays sh. 1200 as premiums per month and claims ins eper month. In addition, he is a member of a co-operative society, to which he remits Ksh. 1500 per month, as shares. If Mr. Kariuki's P.A.Y.E is ksh. 2400 per month, calculate his net salary in shillings per month.
(10mks)
18.a. Using a ruler and a paik sof compasses only construct
i. Triangle $A B C$, such thắt $A B=9 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and $\angle C A B=60^{\circ}$
ii. The locus of P Such that $A P \leq B P$
iii. The locusjof Q such that $C Q \leq 3.5 \mathrm{~cm}$
iv. Locuse sen $^{\text {s. }}$ R such that angle $A C R \leq$ angle $B C R$
b. Find the area of the region satisfied by both P and Q
(2mks)
19. Points $\mathrm{D}\left(0^{\circ}, 24^{\circ} \mathrm{E}\right), \mathrm{E}\left(\mathrm{O}_{\mathrm{C}}^{\circ}, 21^{\circ} \mathrm{W}\right), \mathrm{F}\left(60^{\circ} \mathrm{S}, 120^{\circ} \mathrm{W}\right), \mathrm{G}\left(60^{\circ} \mathrm{S}, 110^{\circ} \mathrm{E}\right)$ are marked in a globe represénting the earth with radius $=0.7 \mathrm{~m}$.
(Taking Π as $\frac{22}{7}$).
a. Find the length the arc DE.
b. If A is the centre of the latitude $60^{\circ} \mathrm{S}$, and B is the centre of the latitude O° find
i. the length $A B$
(3mks)
ii. the area of the major sector AFG
(4mks)
20. In a group of 40 people 40 are healthy and every person of the remaining 30 has either high blood, oressure, a high level of cholesterol or both. 15 have high blood pressure. and 25 have high level of cholesterol. If a person is selected at randow from this group, what is the probability that he/she
a. Has high blood pressure only
b. Has high level of cholesterol only
c.. Has high blood pressure and high level of cholesterol
d. Has either high blood pressure or high level of cholesterol
21. Three consecutive termscina G.P are $3^{2 x+1}, 9^{x}$ and 81 respectively.
a. Calculate the value of ${ }^{2} x$ (2 mks)
b. $\quad e^{2}{ }^{2}$ Find the common ratio of the series.
c. Calculate the sum of the first 10 terms of the series.
d. Given that the $5^{\text {th }}$ and $7^{\text {th }}$ terms of the G.P in (a) above form the $1^{\text {st }}$ two consecutive terms of an A.P Calculate the sum of the $1^{\text {st }} 20$ terms of the A.P.
(3mks)
22. Two variables y and $x^{\text {core }}$ $y=x+a x{ }^{b}$. The fắble below shows the corresponding values of x and y.

X		1.5	2	2.5	3	3.5	4
y	$\begin{gathered} 7.54 c^{5} \\ e^{5} \end{gathered}$	9.33	11.00	12.59	14.12	19.90	27.23

a. e^{2} By drawing a suitable line graph, estimate the values of a and b. (9mks)
b. Write down the equation connecting y and x .
23. The marks obtained byfifty candidates were recorded in the table below.

Marks	0-9	10.19	20-29	30-39	40-49	50-59	60-69
No. of candidates			12	9	7	5	3

a. Draw ${ }^{5}$ cumulative frequency graph and use it to estimate.
i.

MAedian
ii. Quartile deviation
iii. The percentage number of candidates failing if the pass mark was 25 marks. (2mks)
iv. The range of marks scored by the middle 30% of the candidates. (2mks)
24. A theatre has a seating eapacity of 250 people. The changes are sh. 100 for an ordinary seat and s申i. 160 for a special seat. It costs sh. 16,000 to stage a Show and the theatre must make a profit. There are never more that 200 ordinary seats and for a show to take place, at least 50 ordinary seats must be occupied. The number of special seats is always less than twice the number of ordinary seats.
a. Takinge x to be the number of ordinary seats and y the number of special seats, write down all the inequalities representing the information above.
b. On a graph paper, show the region represented by the above inequalities.
(4mks)
c. Determine the number of seats of each type that should be booked in order to maximize profit.
(2mks)

