SUPAJET

Name:

\qquad Index Number:

Candidate’s Signature

\qquad

Date

\qquad

232

RHYSICS
PAPER 3
PRACTICAL
JULY - 2013
TIME - $2 ½$ HRS.

INSTRUCTIONS.

- Answer ALL the questions in the spaces provided in the question paper.
- You are NOT allowed to start working with the apparatus for the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper.
- This time is to enable you to read the question paper and make sure you have all the apparatus that you may need.
- Electronic calculators may be used
- All working must be clearly shown where necessary.

FOR EXAMINER'S USE ONLY.

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	20	
2	20	
Total Score	$\mathbf{4 0}$	

Q. 1 You are provided with the follewing

- One half meter rule
- One retort stand
- A boss and a clamp
- One 10 g mass
- Six cylindrical masses with hooks labeled $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}$ and M_{6}
- One 100 ml neasuring cylinder
- Three pieges cotton thread
- One $40 \theta^{\prime \prime} \mathrm{ml}$ beaker
- Watef ín a 500 ml beaker

Proceed as follows

a.i. Balance the rule and note the position of its center of gravity. This point of suspension should be maintained throughout the experiment:
ii. Suspend the cylindrical mass M_{1} at a distance of 3.5 cm from center of gravity of the rule using a looped thread. Suspend the 10 g mass to balance the mass. (see figure 1). Record in table 1, L_{1}, the distance between the center of gravity of the rule and the balance point of the 10 g mass

iii. Suspend M1 in water contained in the 400 ml beaker. Adjust the position of the 10 g mass to balance M1 (See figure 2)

iv. Remove M_{1} with the loop ofiffiread and determine its volume using the 100 ml measuring cylinder.
Record this volume, $\mathrm{V}_{8} \mathrm{in}^{2}$ table 1

	M_{1} *	\mathbf{M}_{2}	M_{3}	\mathbf{M}_{4}	M	\mathbf{M}_{6}
Vol V(cm ${ }^{3}$)	$j y^{i v^{2}}$					
$\mathrm{L}_{1}(\mathrm{~cm})$						
$\mathrm{L}_{2}(\mathrm{~cm})_{x} \mathrm{e}^{-\hat{0}}$						
$\left(\mathrm{L}_{1}-Q_{i}\right)(\mathrm{cm})$						

b. Repeat the procedures a (ii) to a (iv) for the other cylindrical masses and complete the table.
(7mks)
i. On the grid provided, plot the graph of volume ($\mathrm{y}-\mathrm{axis}$) against $\left(\mathrm{L}_{1}-\mathrm{L}_{2}\right)(5 \mathrm{mks})$

ii. Determine the slope of the graph
iii. $\mathrm{C}^{\hat{\prime}}$ Given the equation of the graph as

$$
V=\frac{21}{5 K} \quad L_{1}-L_{2}
$$

Where K is a constant, Determine the value of K
d. Design a set up and use it to determine the mass of the half-meter rule without using the cylindrical masses. Draw the set up and show your working. (3mks) Mass of the half metre rule $=$
Q.2. You are provided with the following:

- a voltmeter
- two new dry cells and accel holder
- a switch
- a resistor labeled 思 (4)
- a wire mounteďon a mm scale and labeled G.
- a micrometerscrew gauge (to be shared)
- \quad six connecting wires with six crocodile clips

Proceed asstollows:

a. Rerecord the length L_{0} of the wire labeled G
$L_{0}=$ \qquad
Use the micrometer screw gauge provided to measure the diameter of the wire labeled G at two different points and determine the average diameter, d .

The diameter $\mathrm{d}_{1}=$ \qquad $\mathrm{mm}, \mathrm{d}_{2}=$ \qquad mm

Average diameter $\mathrm{d}=$ \qquad mm

Determine the radius r of the wire in metres.

Radius $\mathrm{r}=$ \qquad m
b. Set up the apparatus as shown in the circuit diagram in the figure below.

i. Use the voltmeter provided to measure the p.d V_{R} across R and the p.d, V_{G} across G when the switch is closed.
$V_{R}=$ \qquad Volts
$\mathrm{V}_{\mathrm{G}}=$ \qquad Volts

Open the switch

ii. Use the value of R provided and the value of V_{R} in b (i) above to calculate the current I flowing through R when the switch was closed.
I = \qquad Amperes
iii. Deteribine the constant H given that

$$
e^{\mid B P^{P^{x}}=} \frac{100 V_{G}}{1 x L_{0}}
$$

$$
H=\ldots \ldots . . . \ldots m^{-1}
$$

c. Connect the voltmeter across R as shown in the figure below.

Adjust the position of one crocodile clip on the wire G to a point such that the length L of the wire in the circuit is 5 cm (see the figure above). Close the switch.
Read and record in the table 2 the value for the p.d across R. Open the switch.
d. Repeat the procedure in (c) above for the other values of L shown in table 2.

Table 2

Distance L (cm)	0	5	10	20	30	40	60	70
p.d V across R (V)								

(3mks)
e.i. On the grid provided plot the graph of V (y-axis) against L
(ii) From the graph determine $1 c_{1}^{5}$, the value of L when $V=\frac{V_{0}}{2}$ where V_{0} is the p.d where $L=0$

Determine the constant D for the wire given that

$$
D=\frac{R}{L_{1}} \times \frac{300}{V_{0}}
$$

g. Determine the constant p given that

$$
P=\frac{\pi r^{2}}{2}(D+H) \text { where } r \text { is the radius of the wire in metres. } \quad(2 m k s)
$$

